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Abstract

A Lagrangian star is a system of three Lagrangian submanifolds of the symplectic
space intersecting at a common point. In this work we classify transversal Lagrangian
stars in the symplectic space in the analytic category under the action of symplec-
tomorphisms by using the method of algebraic restrictions. We present a list of all
transversal Lagrangian star.
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1. Introduction

The problem of classification of germs of s Lagrangian submanifolds L;,--- , Ly
intersecting at a common point p (defined in [J] as s-Lagrangian star at p) under
the action of symplectomorphisms was introduced by Janeczko in [J]. In the case of
three Lagrangian subspaces in a symplectic vector space (M,w) under the action of
symplectic transformations, the natural invariant is the Maslov index ([LV]), that is,
the signature of the Kashiwara quadratic form Q(z1, x2, r3) = w(xy, x2) + w(xs, r3) +
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TRANSVERSAL LAGRANGIAN STARS

w(zs, z1) defined on the direct sum of the Lagrangian subspaces. Janeczko generalizes
the Maslov index to the nonlinear case.

The aim of this paper is to obtain the symplectic classification of 3-Lagrangian
stars two by two transversal in a symplectic space. For this purpose we use the
method of algebraic restrictions introduced in [DJZ2]. We obtain a list of all transver-
sal Lagrangian star.

A generalization of the Darboux-Givental Theorem ([AG]) to germs of quasi-
homogeneous subsets of the symplectic space was obtained in [DJZ2] and reduces
the problem of symplectic classification of germs of quasi-homogeneous subsets to the
problem of classification of algebraic restrictions of symplectic forms to these subsets.
By this method, complete symplectic classifications of the A — D — FE singularities
of planar curves and the S5 singularity were obtained in [DJZ2].

The method of algebraic restrictions was used to study the local symplectic alge-
bra of 1-dimensional singular analytic varieties. It is proved in [D1] that the vector
space of algebraic restrictions of closed 2-forms to a germ of 1-dimensional singular
analytic variety is a finite-dimensional vector space.

The method of algebraic restrictions was also applied to the zero-dimensional
symplectic isolated complete intersection singularities (see [D2]) and to other 1-
dimensional isolated complete intersection singularities: the S, symplectic singu-
larities for p1 > 5 in [DT1], the T7 — Ty symplectic singularities in [DT2], the W5 — W,
symplectic singularities in [T1] and the U7, Ug and Uy symplectic singularities in
[T2]. In [DJZ3] the method is used to construct a complete system of invariants in
the problem of classifying singularities of immersed k-dimensional submanifolds of
a symplectic 2n-manifold at a generic double point. In [ADW], the authors studied
the local symplectic algebra of curves with semigroup (4, 5,6,7) by this method.

This paper is organized as follows. Section 2 contains basic definitions about
Lagrangian stars and the formulation of the main result. We also explain why we
use the method of algebraic restrictions for this problem. We recall the method of
algebraic restrictions in Section 3. In Section 4 we reduce the problem of classification
of algebraic restrictions of symplectic forms to the linear case. Finally in Section 5
we obtain the symplectic classification of 3-Lagrangian stars two by two transversal.

2. Lagrangian stars

Consider (R*,w = Y  dx; A dy;) the 2n-dimensional symplectic space with
coordinate system (z1,...,Zn, Y1,---,Yn)-

Let {Li,..., Ls} be a system of Lagrangian submanifolds of (R?",w) intersecting
at the origin.
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Definition 2.1 ([J]). The germ of Lagrangian submanifolds ({L, ..., Ls},0) is called
s-Lagrangian star. If s = 2 and Ly is transversal to Ly then the 2-Lagrangian
star ({L1, Lo}, 0) is called the basic Lagrangian star. The 3-Lagrangian star is simply
called a Lagrangian star. We denote L = Ly U ---U L.

Definition 2.2. The germ of a subset N C (R™,0) is called quasi-homogeneous
if there exist a local coordinate system xq,...,x, of (R™ 0) and positive integers
AL, ..y Am with the following property: if (ay,...,an) € N then (tMay, ..., t*"a,,) €
N, for all t € [0,1]. The integers Ai,..., A\ are called weights of the variables
1, ..., T,m, respectively.

Let E = ({L1,...,Ls},0) be an s-Lagrangian star. We call E a quasi-homogeneous
s-Lagrangian star if L = LyU---ULjs is a germ of a quasi-homogeneous subset. More-
over, F is called transversal if Ly, ..., L, are two by two transversal intersecting only
at the origin.

Given E = ({Ly,...,Ls},0) and E' = ({L'y,...,L's},0) two s-Lagrangian stars
we say that they are diffeomorphic if there exists a germ of diffeomorphism
® : (R?,0) — (R?",0) such that ®(L;) = L, for some permutation j; of {1,...,s}.
When @ is a germ of a symplectomorphism of ((R?",w),0) we say that F and E’ are
symplectically equivalent (or equivalent).

The germ of a Langrangian submanifold of (R**, Y " | dx; Adx;) is symplectically
equivalent to Ly = {(z,y) € R*"|z; = --- = 2z, = 0}. The germ L, at 0 of a
Langrangian submanifold of (R?",>"" | dz; A dx;) which is transversal to L; at 0 can
be desribed in the following way

08
?Jz—a

(@1, ap) forr =i, m,

1

where S is a smooth function-germ on R". Thus the transversal Lagrangian 2-star
is symplectically equivalent to the basic Lagrangian star ({Li, Ls},0) defined by

Ly ={(z,y) e R*"|zy = --- =2, =0} and Ly = {(z,y) € R*"|y; = --- = y,, = 0},
by a symplectomorphism of the following form
S oS
P RQH > (%CU) = (..'['1,"' y Lny Y1 — a_xl(xh"' axn>a"' yYn — a_xn('rlv"' 7xn))'
It implies that a trasversal Lagrangian 3-star is symplectically equivalent to a La-
grangian 3-star ({Li, Ly, L3},0), where L; = {(z,y) € R*|z; = --- = z, = 0},
Ly ={(z,y) € R*|y; = --- =y, = 0} and L3 can be desribed in the following way
08
i (X1, ,2,) forr=i,--- n,
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where S is a smooth function-germ on R". Using the classical method for the
classification of transversal Lagrangian 3-star ({L;, L, L3},0) we should apply the
symplectomorphisms which preserve the set L; U Ly to obtain the normal form of
Ls. It is easy to see that such symplectomorphisms have following forms ®(z,y) =
(®1(z,y), Pa(z,y)) or U(x,y) = (Vy(z,y), ¥s(x,y)), where &;, ¥; : R*® — R" for
i = 1,2 such that ®,(0,y) = Pa(x,0) = ¥i(z,0) = ¥y(0,y) = 0. A Hamilto-

nian vector field Xz = Z?:l ‘35 82 — %a%_ is tangent to L; U Ly if the Hamilto-

: : : : - oH OH
nian function-germ H satisfies the following system of equations Yigy — Tige, =
Y et Doty ThYIGij k(2 y) for 4,5 = 1,---  n., where g, are function-germs on

R*". Hamiltonian function-germs of the form H(x,y) = >3, >0 @iy fi (2, y),
where f;; are function-germs on R?", satisfy the above system of equations. So the
classical method is complicated for trasversal Lagrangian 3-stars. Therefore we ap-
ply the method of algebraic restriction to obtain the following classification theorem,
which is the main result of this paper.

Theorem 2.3. A transversal Lagrangian 3-star in (R*", """ | dx; A dy;) is symplec-
tically equivalent to one and only one of E° = ({Ly, Ly, L§},0), where

Li={x1=-=2,=0}, Ly={y1 ==y, =0},

Lg:{gjl—yl:...:xs—yszx8+l—|—ys+1:...:xn—|—yn:0}7

and s is a non-negative integer such that s < 3.

Notations: Let 6 be a k-form on ((R*",w),0) and let £ = ({Ly,...,Ls},0) be
a s-Lagrangian star.

1. The set of smooth points of L is denoted by L.

2. The restriction of § to the set {(p,v1,...,vx)|p € L; and vy,..., v, € T,L;} is
denoted by 0|7z, j =1,...,s.

3. Suppose 0(p)(u1,...,ux) = 0 for every p € Loy and uy, ..., up € T)Lies. In
this case, we say that 6 vanish on T'L,.

All objects in this paper (functions, vector fields, k-forms, maps) are R-analytic.

3. Method of algebraic restrictions

In this section we present the method of algebraic restrictions. More details can
be found in [DJZ2].

Let M be a germ of smooth manifold. We denote by A¥(M) the space of all
germs at 0 of differential k-forms on M. Given a subset N C M one introduces the
following subspaces of AF(M):
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A (M) ={w € A¥(M) : w(x) =0, for all z € N},
FF(N, M) ={a+dB:ac N(M),3 e N1 M)}

The notation w(z) = 0 means that the k-linear form w(x) vanishes for all k-tuple
of vectors in T, M, i. e. all coefficients of w in some (and then any) local coordinate
system vanish at the point x.

Definition 3.1 ([DJZ2]). Let N be a subset of M and let € A*(M). The algebraic
restriction of 0 to N is the equivalence class of 0 in A¥(M), where the equivalence
is as follows: 0 is equivalent to 6 if 6 — 6 € (N, M). The algebraic restriction of
0 to N is denoted by [0]y.

Notation: Let 6 be a k-form on M. Writing [#]y = 0 (or saying that 6 has zero
algebraic restriction to N) we mean that [0]y = [0]y, i.e. € FF(N, M).

Remark 3.2. It is clear that if § € /F(N, M) then d € @ (N, M). Moreover,
if 01 is a k-form such that [61]n = 0 then [01 A 3]y = O for every q-form 05. Then
if 01 is a k-form and if 0 is a q-form the algebraic restrictions d[6h]n 1= [db1]n and
[01] 5 A [Ba]n = [01 A O] n are well defined.

Let M and M be manifolds and ® : M — M a local diffeomorphism. Let N be a
subset of M. Tt is clear that ®*.a/F(N, M) = o/f(®~*(N), M). Therefore the action
of the group of diffeomorphisms can be defined as follows: ®*([0]y) := [®*0]o-1(n),
where 6 is an arbitrary k-form on M. Let N C M. Two algebraic restrictions [0]y
and [f]; are called diffeomorphic if there exists a local diffeomorphism form M
to M sending one algebraic restriction to another. This of course requires that the
diffeomorphism sends N to N. If M = M and N = N, ® is called a local symmetry
of N.

The method of algebraic restrictions is based on the following result:

Theorem 3.3. (i) (Theorem A in [DJZ2]) Let N be a quasi-homogeneous subset of
R2". Let wy,w; be symplectic forms on R?*™ with the same algebraic restriction
to N. There exists a local diffeomorphism ® such that ®(x) = x for any x € N
and <I>*w1 = Wwo-

(ii) (Corollary of (i)) Let E = ({Ly,...,L,},0) and E = ({L1,...,L,},0) be s-
Lagrangian stars diffeomorphic to a quasi-homogeneous s-Lagrangian star E =
({L1,...,Ls},0). Then E and E are equivalents if and only if [w]; and [w];
are diffeomorphic.

Remark 3.4. (i) Let E = ({L1, L, L3},0) be a transversal quasi-homogeneous
Lagrangian star. Due to Theorem 3.3, the symplectic classification of transver-
sal Lagrangian stars diffeomorphic to E reduces to the classification of algebraic
restrictions of symplectic forms to L vanishing on T Lyeg.
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(i) Let E = ({Ly, Ls, Ls},0) be a transversal Lagrangian star in ((R**,w),0). It
is not difficult to prove that there exists a smooth coordinate change in (R*",0)
such that, for all i, Ly = L;, where Ly = {y1 = -+ = yp = 0}, Ly = {1, =
o=z, =0} and Ly ={x; —pp = =, —y, = 0}.

Definition 3.5. The germ of a function, of a differential k-form, or of a vector
field a on (R™,0) is quasi-homogeneous in a coordinate system (xq,...,%,) on
(R™,0) with positive weights (A1, ..., A\n) if Lpa = da, where E = > \jx;0/0x;
is the germ of the Euler vector field on (R™,0) and 0 is a real number called the
quasi-degree.

It is easy to show that « is quasi-homogeneous in a coordinate system (x1, . .., Z,)
with weights (A1,...,\n) if and only if Ffa = t°a, where Fi(zy,...,7,) =
(thxy, ..., t*x,,). Thus germs of quasi-homogeneous functions of quasi-degree §

are germs of weighted homogeneous polynomials of degree 6. The coefficient f;, . ;,
of the quasi-homogeneous differential k-form ) fi, ... dz;, A--- Adz;, of quasi-degree
0 is a weighted homogeneous polynomial of degree § — Z?zl Ai;- The coefficient f;
of the quasi-homogeneous vector field 1" f;0/0x; of quasi-degree 0 is a weighted
homogeneous polynomial of degree § + \;.

Let 6 be the germ of a k-form on (R™, 0). We denote by ) the quasi-homogeneous
part of quasi-degree r in the Taylor series of #. It is clear that if a smooth function
h vanishes on a quasi-homogeneous set N then A" also vanishes on N, for every
non-negative r. This simple observation implies the following result:

Proposition 3.6. If § is a k-form on (R™,0) with [f]x = 0 then [0y = 0, for
any .

Proposition 3.6 allows us to define the quasi-homogeneous part of an algebraic
restriction.

Definition 3.7. Let a = [f]y be an algebraic restriction of a k-form 6 to a germ
of quasi-homogeneous subset N C (R™,0). We define the quasi-homogeneous part
of quasi-degree v of a by a = [0M]y. When a = o we say that a is quasi-
homogeneous of quasi-degree r.

Proposition 3.8 ([D1]). If X is the germ of a quasi-homogeneous vector field of
quasi-degree © and w is the germ of a quasi-homogeneous differential form of quasi-
degree j then Lxw 1is the germ of a quasi-homogeneous differential form of quasi-
degree i + j.
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Throughout this paper, E = ({L;i,Ls,L3},0) is the Lagrangian star in
((R?",w),0) where Ly = {y; = -+ =y, = 0}, Ly = {; = -+ = 7, = 0} and
Ly={x1—y1 ==z, —yp =0}.

Let k£ be a non-negative integer. Let us fix some notations:

AL, (R*"): the vector space of the k-forms vanishing on T Licg.

° [Akfeg(RZ”)] 1. the vector space of algebraic restrictions to L of elements of
2n
Areg (R7™).
o ABI(R?): the subspace of AL, (R*") consisting of closed k-forms vanishing on
T Liyeg.

(AL (R?)]L: the subspace of [AE, (R*")], consisting of algebraic restrictions

to L of elements of AXC(R?7).

reg

4. Reduction to the linear case

In this section we reduce the classification of the algebraic restrictions to L of
symplectic forms vanishing on T'L..; under the action of local symmetries of L to
the classification of the algebraic restrictions to L of homogeneous symplectic forms
of degree 2 under the action of linear local symmetries of L.

The first step is to find a finite set of generators of [AZ (R*")]r. For this we need
some results.

Proposition 4.1. Let 0 be a k-form in AL (R*™). Then 6) € AL (R*™) , for all
non-negative integer r > k.

Proof. Since 6 is a k-form then ) = 0 for all r =0,...,k — 1. Let » > k. Writing
f in its Taylor series we have

9:9(’6)_‘_..._‘_9(7)4_7"7

where 6() is a homogeneous k-form of degree s, s = k,...,r, and T is a k-form with
T =0,i=0,...,r.
Let p € L; and uy,...,u, € T,L; = Lj, for some j € {1,2,3}. Let u =
(ug,...,ux) then for t # 0 small enough we have
0=0(tp)u = 0% (p)u+ - + "0 (p)u + T(tp)u.

T(t
tfi) = 0 we conclude that (") vanishes on TL;, for all j € {1,2,3]}.

Therefore ") vanishes on T Lyeg. O

Since lim
t—0



TRANSVERSAL LAGRANGIAN STARS

Next we show that the generators of [Afecgl(]RZ”)] 1, are obtained as derivatives of

the generators of [A},(R**)]z. In this case we reduce our problem to I-forms.

Proposition 4.2. Let o be a 2-form in Afegl(]RQ"). Then there exists a 1-form v in
AL _(R?") such that o = dry.

reg

Proof. We use the method described in [DJZ1]. Define F : [0, 1] x R** — R?" given
by F(t,xz,y) = Fi(z,y) = (tx,ty). Let X; be the vector field associated with the
equation % Ft = X,0F, for 0 <ty <t <1. We have

1 d 1 1 1
o — F o= /  Fiodi= / Fr (Lx,0)dt = / Fr(d(ix,0))dt =d / Fr (i, 0)dt.
to

to to to

Letting ty — 0 we get o0 = df where 5 = fol F}(ix,0)dt. For every p € Lo and
v € T, Ly we have

F(ix,0)(p) - v = o(tp)(Xi 0 Fy(p), dFi(p) - v) = 0,
for all t € (0,1]. Then S(p) - v = 0. O

Proposition 4.3. If v € AL_(R?>) then dy € A2 (R™).

reg ( reg

Proof. We can write y =Y j:l( fidx;+g;dy;), where f; and g; are germs of functions
on (R* 0),j=1,...,n. We have

_ afy , dg; , agj ‘ )
d’y-Z((a 0 dy )Adx]+(8xi T (9yidyz Ndy; ).

3,0=1

As Y|rr., = 0 then f;(x,0) = 0, g;(0,y) = 0 and (f; + g;)(2,2) = 0. Thus
d'7|TL1 = d7|TL2 = O and

dylrr, =) ((af (z,2) + aij- (2, z))dzi /\dzj> =0.

1,7=1

]

Due to Proposition 4.1, Aﬂeg(RQ") is generated by homogeneous 1-forms. Next
we find generators of Al}eg(R%) homogeneous of degree < 4. In Lemma 4.4, we
prove that the elements in Al g(RZ”) homogeneous of degree > 5 have zero algebraic

restriction to L. We Conclude that [A},(R*")]z is a finite dimensional vector space
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generated by algebraic restrictions to L of homogeneous 1-forms vanishing on 7'Lyeg
of degree < 4.

Clearly there is no homogeneous 1-forms of degree 1 in A}, (R*").

Generators of degree 2:

Let Y= ZZj:l (aijxidwj + bijxidyj + cijyid:cj + eijyidyj) be a 1-form in A%eg(R%l).
It is easy to see that > /', ayxidr; = Y0, ejyidy; = 0 and by = —cy;, for all
i,7 € {1,...,n}. Thus the homogeneous 1-forms of degree 2 in A

1 (R?*") are linear
combination of the 1-forms:

reg

o zv;dy; —ydx;, 1,5 €{1l,...,n}.
Analogously we find the generators of degree 3 and 4.

Generators of degree 3:
o x;x;dy, — xiy;dyy o x;x;dyy — y;xjdxy
o z;x;dyy — Yiridyk
o x;xjdyy — viy;dry o 1;x;dyr — yiyjdry,

where 7,5,k € {1,...,n}.

Generators of degree 4:
o v;xjxrdy; — xiwyrdy o x;x;rpdy; — T;Y;Trdy;

o z,xrRdy; — Ty Trdy; o z;xxdy; — yixrrday

o v;w;x,dy; — Yyiv;xRdy

o 1;x;xdy; — Tiyyrday
o z;x;wdy; — 2y yrdy;

o 1,x;rpdy; — YT jyrda
o z,x;rpdy; — YiZjyrdyr
o z,xrrdyr — Yiy;Trdy; o Titiredys = yiyredr
o 11 x,dy; — 1;T5yRdT o v,x;rdy; — Yy yrda;

where 7,5, k,l € {1,...,n}.
Lemma 4.4. The 1-forms homogeneous of degree greater than or equal to 5 in

Al (R*) have zero algebraic restriction to L.
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Proof. Let & = S (£;(w, 9)dz; + g5z, y)dy;) in ALy (R?"), where f;, g; are germs
of functions on (R?",0), ¢ = 1,...,n. As 7 vanishes on TL; and T'Ly then ¥ =
> i1 Wifij(z, y)da+xigi5(x, y)dy;), where fi;, gij are germs of functions on (R*",0),

,7=1,...,n.
Let v be a homogeneous 1-form of degree [ +1 > 5 in A} (R*"), then v is of the
form:

= Z Q1 gy ik Yig Tig * * 'l'z‘zdxk +oee 4+ Z Qpiy i kYiy * 'yildﬂck-i-

Dbtk i Yio Y Y+ Y by ik @iy - T Ay,
where iq,...,i,k € {1,...,n}. Asv|rp, =0, for iy,... 4,k € {1,...,n} one has

Z(al,a(il)---a(il)k + o o(in)olik T O1o(in)otik T F Do) o@)k) = 0,

oES;
where S; is the group of permutation of {iq,...,4}. Thus the 1-forms homogeneous
of degree [ + 1 in Al (R*") are generated by 1-forms of the type

Pio = YirYirTis *** TiydTk — To(iy) * ** To(in)Yo(ivsr) * * * Yoli) ATk,

§to = YirYioTiz Ty ATk — Yo(iy) ** * Yo (i) Toliver) " To(iy) Wk

where c € S;and 0 <t <[ -—1.

Let t € {l1,...,1 — 1}. Observe that the polynomial y; vi, @i, - 2;Tp—
To(i) " Ta(iy)Yoliser) * * * Yo(i)Tr vanishes on L. Then the 1-forms of the type p;, and
& are generated by

P = YirYiyTig "+ - xild‘rk —Yi o yild‘rk
51 = yhyigxig T wildl‘k’ - xil T %dykz

§o = Yi, YinTiy - -+ Ty (dg — dyp).

Note that the polynomial h(x,y) = vi, Yi,Tis - - - T4, (g — yi) vanishes on L. Then the
1-form dh has zero algebraic restriction to L. We have dh = & + 4, where

Y= YinTiy - i) (T — Yr)dyiy + Uiy iy - - i) (X — yi)dYsy

!
+ D s Y VisTig - Tiy 1 Tigy * - Ty (T — Yp) Ay

Clearly 4 has zero algebraic restriction to L. Then &, has zero algebraic restriction
to L. The proof that 1-forms of the type p and &; has zero algebraic restriction to L
follows from the fact that & has zero algebraic restriction to L. O
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The following result provides a finite set of generators of [A?é‘g(]RQ”)] L-

Proposition 4.5. A finite set of generators of [A%{(R*™)| is given by:

reg
e Degree 2: [dx; Ndy; — dy; Ndxjlp, 1<i<j<n;

e Degree 3: [d(x;y;) Ndxy —d(yy;) Ndzgn, [d(zy;) Ndog—d(zy;) Adyg]n, 1<
1<j<n, 1<k<n;

o Degree 4: [d(z;xjyp) Ndx;—d(yiy;xe) Adyl, 1<i<j<k<n, 1<[<n.

Proof. According to Propositions 4.2 and 4.3, the derivatives of the generators of
[Aleg (R*™)] 1, generate [AZS/(R*")],. Therefore it is sufficient to verify that the alge-
braic restrictions represented by

o vidy; —yidr;, 1<i<j<n
o zyidxy — yiy;dry, vyidrg —xydy, 1 <i<j<n, 1<k<n
o vixjyrdr; — yiyrrdy;, 1<i1<j<k<n 1<I1I<n

generate [Aﬂeg(R%)] - According to Proposition 4.1, we fix a degree and find gener-
ators for this fixed degree. Since the calculation is similar for each degree, we find a
set of homogeneous generators of degree 4. The homogeneous 1-forms vanishing on

T Lyeg of degree 4 are generated by:
o xv;xjrrdy; — xixyrdy o 1;x;rdy; — T;Y;Trpdyy
o riwjapdy — Tiyxrdy o v.x;vpdy; — yivjrpd
o zxjrpdy; — Yix;xrdy
L sz‘IjIkd?Jz - ZEiyjykdiUz
o 1w xdy; — ;Y Yedy
o z;x;xdy; — yixyrday
o xxjxrdy, — yitjypdy
o zirjpdy — yiy;Trdy o TitiTedys = yiy;redr

o x;x;wdy; — 2w yrda; o v,x;rrdy; — Yy yrda;
where 4,7, k,l € {1,...,n}. Adding a zero algebraic restriction to L of the form

[h(z,y)dx;];, and [h(z,y)dy]L, where h is a polynomial vanishing on L, we reduce
the generators of degree 4 to the following:
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o [zixjxrdy — xixjypdy) L
o [viz;wpdy; — iy yrdrL
o [vwmpdy; — viy;yeda) L

where i,5,k,l € {1,...,n}. Note that d(zz;zry — mizjyry) € g (L, (R*™,0)).
Moreover,

d(ziz;opy — vixjyry) =  (2500y — 2596y)de; + (TiTey — Taypy)dej+
xxyda, — v jydy, + (2252 — T05y)dy;.

Then the algebraic restrictions of the type [z;x;zrdy; — xi7;ypdy)], are generated
by algebraic restrictions of the type [z;z;yrdyi — yiyjzrdar, i,7,k,1 € {1,...,n}.
Similarly, [z,x;x,dy; — zy;yedr]r and [z;x;0pdy; — yiy;yeda| are generated by
(zixjyedy, — viy;eed]r, 4, 5, kL€ {1,...,n}.

The algebraic restrictions

[wix;ypdr; — yiyjardy)p, 1<i<j<k<n, 1<1<n,

generate the set algebraic restrictions of the 1-forms homogeneous of degree 4 in
[Aleg(R*™)] since for all permutation of the indices i, j, k the algebraic restrictions

of the type [z;z;ypdx; — y;y;xrdy] L, are the same. O

Definition 4.6. A germ of vector field n on (R™,0) is liftable over a multigerm
F={F,...,F}: (R*S) — (R™0) if there exist germs of vector fields &, ..., &,
on (R*,0) such that

dF;o& =noF;,, i=1,...,s.

We denote the set of the germs of liftable vector fields over F' by Lift(F).

Consider the multigerm F : {Fy, Fy, F3} : (R",0) — (R®*",0) defined by
Fi(xy,...,zn) = (x1,...,2,,0,...,0), Fo(ys,...,yn) = (0,...,0,91,...,y,) and
Fy5(z1,. .y 2n) = (21, -y 20y 215 -+ Zn)-

Proposition 4.7. The germs of liftable vector fields over F are of the form

Sy <Xia%i+Y}a%>, where X; € (x1,...,2,), Yi € (Y1,...,yn) and X; —Y; €

(1 = Y1y Ty —Yn), i =1,...,n.
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Proof. Let n =Y, (XZ 5o T Y ) be a germ of a vector field on (R*",0) where
X, Y; are as above. Consider the germs of the vector fields & (z) = >, Xi(z,0) ai

&) = Y, Yi(0,9):2 and &) = Y0, Xi(z,2) 2. Cleatly dFy o & = n o F,
1 =1,2,3. Then 7 is liftable over F.

Let W = >0, (U 9 —|—V > € Lift(F). Then there exist py,pa, p3 germs

gere
of vector fields on R"™ such that W o F; = dF; o p;, i = 1,2,3. Writing p;(z) =
S i1 ol (x )50 d for some germs of functions p?, j = 1,...,n, one has

dF1<l’> ) pl(x) = (p%(:t), S 7p7f(x)707 s 70)

Then V; € (y1,...,yn), for all i € {1,...,n}. Analogously we have U; € (z1,...,z,)
and U; =V, € (x1 — 41, .., Tp — Yn), foralli=1,... n. ]

The next result establishes a relation between liftable and tangent vector fields.
Proposition 4.8. If n € Lift(F) then n is tangent to L.

Proof. Let h be a germ of function vanishing on L. There exist germs of vector fields
& such that no F; = dF;0&;,i=1,2,3. If p € (R",0) then

(dh o n)(Fi(p)) = dh(Fi(p)) - n(Fi(p)) = dh(Fi(p)) - dFi(p) - &(p)

since h o F; =0 on (R",0). O

Proposition 4.9. Let n € Lift(F) and let 0 be a k-form with zero algebraic restric-
tion to L. Then L,0 has zero algebraic restriction to L.

Proof. 1t follows from the fact that n is tangent to L and £, (df) = d(L,3), for all
(k — 1)-form 3. 0
Proposition 4.10. Let 0 € A2(R?") and n € Lift(F) then L,0 € AZS(R™).

reg reg

Proof. By Proposition 4.2 there exists a 1-form v € Areg(RZ") such that o = d.
Thus, L,0 = L,dy = dL,y. By Proposition 4.3, it is sufficient to prove that £,y
Vanishes on I'Lyeg.

Let v = >0, (fi(z, y)da; + gj(2,y)dy;) € Al (R*) and let X;,Yj be germs of

functions, j = 1,...,n, such that n = Z (Xw?; +Y;

Em ) As v vanishes on
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T Loy we have fj(x,0) =0, g;(0,y) =0 and (f; + g;)(z,2) = 0. Then

_ (fy i) g Xy, o 0gYy) o 9gYs)

,j=1

af; 0f;
+ Z ( axz Xida; — X;dx;) + Gy] (Yida; — deyi))

2,j=1

" (g, g,

It follows from Proposition 4.7 that £,y vanishes on T'L; and T'L,. The restriction
of L,y to T'Ls is zero since

Loy, = Z (%(Z, z)dz; + %(z’,z)d%)

Z,
ij=1 !

3 (%

2,j=1

— Zydz) + ggj (2, 2)(Zidz; — Zjdzl-))
Zi

- Z ( (% +g] )Z; )<Z,z)d2i + a<f]é—jigj)(fZ’a?«’)(szZj - Zjdzi))

i,0=1

where Z;(2) = X;(z,2) =Yj(z,2), j=1,...,n. O

Let a be an algebraic restriction represented by a symplectic form vanishing on
T Lyeg. Due to Proposition 4.5, a has a symplectic representative o = o 400G 4@
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where
0'(2) = Z aij (d$z AN dy] — dyl AN diL'j)
1<i<j<n
o® = Z bwk xiy;) A dry — d(yiy;) A deg)+
1<i<5<n,
1<k<n
Z bwk xiy;) A dxy — d(zy;) A dyg)
1<i<j<n,
1<k<n
oW = Z Ciim(d(zizyye) A dxy — d(yiyjg) A dy).
1<i<j<k<n,
i<I<n
where a;;, bl(;,)c, bgj.,l, cijki € R. Note that ¢(0) is represented by the matrix
0 C
N

Cij = Qij, 1 <]
where C' = (¢;;) € GL(n,R) is defined by ¢ ¢ = aji, i > j

c“-:2aii,i: 1,...,n
Proposition 4.11. The algebraic restriction o]y is diffeomorphic to [c®)];.

The proof of Proposition 4.11 follows from the next lemma.

Lemma 4.12. (i) The algebraic restriction [o]y is diffeomorphic to [0® + 6]y,
where 0 is a homogeneous 2-form of degree 4 vanishing on T Lyeg.
(ii) The algebraic restriction [0'? + 0], is diffeomorphic to [o@)];,.
Proof. We prove only the item (i) since the proof of (ii) is very similar. We use the
Moser homotopy method. Let

0'154) = Z fzykl(t> (d(xlx]yk) Ndx; — d(yzy]‘xk) A dgl)’
1<i<j<k<n,
1<i<n

where fi;x @ [0, 1] — R are germs of functions with f;x(0) = cjju, 1 <i<j<k<n

n. Let o = 0@ + (1 — t)o® + ag ). Suppose that there exists
R?",0), t € [0,1], a family of local symmetries of L such that

O} [oy|r, = [o]r and @y = Id. (4.0.1)

©
=

f
o
1IN
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Differentiating (4.0.1) on ¢ we obtain

(4)
[ﬁntat]L — [0_(3) - dO‘t ]
L

dt

where 7, is obtained from the equation d®;/dt = 1, o ;.
According to Propositions 3.8 and 4.10, if n, € Lift(F') is homogeneous of degree
1 then
Ema(2) = o),

We look for a germ of vector field 7, satisfying

. 1 2
ino® = > (WG @iysda, — yiysdar) + O (wiydey — viydyy)).
1<i<j<n,
1<k<n

n

0 0
Ifn = Z (Xi(t, x,y)% +Yi(t, x,y)%> then

i=1 ¢

n

in o =" e (Xidy; — Yida;),

1,j=1

eij = CLZ']', ) <j
where ¢ e;; = aji, i > j and E = (e;;) € GL(n,R). Therefore
eii:2ai,~,i: 1,...,71

n

i,j=1 1%535:1,

We have the following system

2
X _bz(jzxiyj
( E0 ) Xn | _ 3 —biziys
— . )
0 B € 1<i<j<n _bz(j%(xi?/j —Yiyj) — bz(jzxiyj
1 ' 2
Ya _bz(jﬁ)z(xiyj — YY) — bgjixiyj
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Let W = (w;;) € GL(n,R) be the inverse matrix of £. The solution of the system
is given by

Xi=— > (wa®@ma) + o+ win(Owi;))
1<i<j<n
Xp=— Z (wm(bﬁfiwi%) et wnn(bl(%xia:j))
1<i<j<n
1 2
Vi=— Y (a0 (zy; — yayy) + bpway;) + -+
1<i<j<n

wm(bgi(l'iyj — YY) + bﬁixiyj))

Y,=- Z (wnl(bgﬁ(%% —yiy;) + bgixi%‘) Tt

1<i<j<n

1 2
Wan (01 (2395 — yiyy) + biniy;))-

By Proposition 4.7 the germ of vector field n, = > | (Xia%i + Yi%) is liftable over
F.

According to Proposition 3.8 and 4.10 we have that Emat(4) is a closed 2-form
homogeneous of degree 5 vanishing on T'L,e.. It follows from Proposition 4.5 that
Ent0§4) has zero algebraic restriction to L.

We determine the germs of functions fijz by the ODEs

, 3 dfiju (1)
Znt(l _ t)o—(?’) — — 2 Jdt (:L‘Z-[L’jykdfﬁl — [Eiﬂijkdyl)
1<i<j<k<n,
i<i<n

with the initial data fi;1(0) = c;ju-
We prove that
d
Ly (0P + (1= t)og) =0 — 5@5‘”-
Thus the family of diffeomorphisms ®; associated to 7, preserves L since n; is liftable
over F' and ®}[o]; = [0]L, t € [0,1]. Therefore o], is diffeomorphic to [0® + 6],
where
0 = Z Ciji(d(xizjyp) N dxy — d(xzjye) A dy;).

1<i<j<k<n,
1<i<n

where ¢ = fijr(1) -
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Proposition 4.13. Let ® : (R?*",0) — (R?*",0) be a local symmetry of L. Then the
germ of diffeomorphism ®Y) is a local symmetry of L.

Proof. Let j; be a permutation of {1, 2,3} such that ®(L;) = Lj,, for i = 1,2,3. Let
p € L;, for some i € {1,2,3}. We can write ® in its Taylor series as

d =004+

where @) = 0. As L; is a germ of a linear subspace of R?" then ®(tp)/t belongs to
the linear subspace ¢;, which contains the germ L;,, for all ¢t € (0, 1]. Then

D(tp)

im 2 1) .
lim —= = &"(p) € 4.
Taking p close to the origin we have ®()(p) € Lj.. O

As a consequence of Propositions 4.11 and 4.13, the classification of the algebraic
restrictions to L of symplectic forms vanishing on 7'L,e, under the action of local
symmetries of L reduces to the classification of algebraic restrictions to L of sym-
plectic forms homogeneous of degree 2 vanishing on 7'L,.; under the action of linear
local symmetries of L. Since every 2-form does not have zero algebraic restriction to
L we have the following result:

Proposition 4.14. Let 01,0, be two symplectic forms vanishing on T L.e. Then
[01]1, is diffeomorphic to [os]L if and only if there exists a linear local symmetry of L

U (R?,0) — (R*",0) such that \11*052) = 052).
5. Symplectic classification of transversal Lagrangian stars
One can get the following result by direct calculation.

Proposition 5.1. Let @ : (R*",0) — (R?*",0) be a linear local symmetry of L. Then
® is represented by one of the following matrices:

5] 5 5] 5 5]
gt “[o 5] o[ 7]

where B € GL(n,R).
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Let o be a symplectic form homogeneous of degree 2 vanishing on T'L,e,. Ac-
cording to Proposition 4.5, o is written as o = ZZ;’:1 a;jdx; N dy;, where a;; = aji,
i,j=1,...,n. For all p € (R*",0), the bilinear form o(p) : R* x R?*" — R has the
representing matrix

0 A
v=[ 0]
where A = (a;;).

Let @ : (R*,0) — (R?",0) be a linear local symmetry of L represented by the

matrix of the type 1 of Proposition 5.1. The pullback of o by ® is given by

(1) { —BgAB BTOAB } :

For the other cases described in Proposition 5.1, the pullback has one of the fol-
lowings representations

0 —BTAB | 0 BTAB
@ | prap o | (5) [—BTAB 0 }
[ 0 —BTAB] 0 BTAB
@ | prap o (6) [—BTAB 0 ]
0 —BTAB |
(4) | BTAB 0

Definition 5.2. Two matrices A, B € M(n,R) are congruent if there exists a matric
P € GL(n,R) such that
A=P"BP.

The problem of classification of algebraic restrictions to L of symplectic forms ho-
mogeneous of degree 2 vanishing on T'L,, under the action of linear local symmetries
of L is equivalent to the problem of classification of invertible symmetric matrices
under the action of congruence. For such classification we use the Sylvester’s Law of
Inertia (see [R]).

For each s € {0,...,n}, define a; = [ws], where

ws =dry Ndyy + -+ - +dxg Ndys — dzsiq N dysyr — -+ — dxy, A dyy,.

Proposition 5.3. Let o be a symplectic form on (R*",0) vanishing on T Lyes. Then
o] is diffeomorphic to one and only one algebraic restriction of the type as, for
some s € {0,...,n} with s < 3.
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Proof. According to Proposition 4.14, it is sufficient to verify that for a symplectic
form o homogeneous of degree 2 vanishing on 7'L,., there exists a linear local sym-
metry of L ¥ : (R* 0) — (R?",0) such that ¥*o = w,, for a unique s € {0,...,n}
such that s < Z. According to Proposition 4.5, for all p € (R**,0) the bilinear form
o(p) : R*™ x R*™ — R is represented by the matrix

0 A }

W:{—A 0

where A € GL(n,R) is symmetric.
Due to Sylvester’s Law of Inertia, there exists B € GL(n,R) such that BT AB is

equal to one and only one of the matrices Z, for some u € {0,...,n} where
Id, 0
Zu = [ 0 —Idn_u]'
If u < % consider @ the linear local symmetry of L represented by
B 0
0 B |’
The bilinear form ®*o(p) is represented by
0 Z,
—Zy 0 |
Then ®*o =" do; Ndy; — > dxy A dy; = w,

If u > % consider ¥ the linear local symmetry of L represented by

5

0 —Z,

Zy 0 )
Due to Sylvester’s Law of Inertia, there exists C' € GL(n,R) such that C7(-2,)C =
Zn_u. Let H be a linear local symmetry of L represented by

el

Thus U*o(p) is represented by
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We have
H YV o = Z dx; N\ dy; — Z dx; N\ dy; = Wy_y.
i=1

i=n—u+1

Then the orbits of algebraic restrictions to L of symplectic forms have symplectic
representatives ws, for s < 7.

It remains only to prove that the orbits of aq,...,q; are disjoints, where [ is the
biggest integer such that [ < . Let u,v € {0,...,n}, u,v < § and u # v. The
forms w,(p) and w,(p) are represented by:

ai=[ 5 &) minm=[ 5 %]

Note that the signatures of Z, and —Z, are distinct of the signature of Z,. According
to Sylvester’s Law of Inertia, the matrix Z, is not congruent neither to Z, nor to
—Z,. It follows from Proposition 5.1 that there is no linear local symmetry of L
T : (R*",0) — (R*" 0) such that T*a, = a,. Therefore the orbits represented by a,
and a, are disjoints. O]

Now we have the elements to obtain the symplectic classification of transversal
Lagrangian stars in ((R*",w), 0).

Proof of Theorem 2.3. Due to Proposition 5.3, the orbits of the algebraic restrictions
to L of symplectic forms vanishing on T'L,e, are a1 = [wi],...,a, = [wy]r, where
u is the biggest integer that satisfies u < 7. Let s be a positive integer such that
s < u. Consider the germ of diffeomorphism @, : (R?",0) — (R?",0) defined by

Sy (z,y) = (T, y1, -+, Ysy —Yst1,-- -, —Yn)- Note that ®*w; = w. Then the algebraic
restrictions aq, ..., a, are diffeomorphic respectively to

Let B = ({®71(L1), @7 (La), €51 (Ls)}, 0).
Finally we apply Theorem 3.3 to obtain the normal forms of transversal La-
grangian stars E', ... EY [
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