Classification of transversal Lagrangian stars

F. Assunção de Brito Lira ${ }^{\mathrm{a}, 1,}$, W. Domitrz ${ }^{\mathrm{b}, 2,}$, R. Wik Atique ${ }^{\mathrm{c}, 3,}$
${ }^{a}$ Centro de Ciências Exatas e Tecnológicas - UFRB
Cruz das Almas, Brazil
${ }^{b}$ Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
${ }^{c}$ Instituto de Ciências Matemáticas e de Computação - USP
São Carlos, Brazil

Abstract

A Lagrangian star is a system of three Lagrangian submanifolds of the symplectic space intersecting at a common point. In this work we classify transversal Lagrangian stars in the symplectic space in the analytic category under the action of symplectomorphisms by using the method of algebraic restrictions. We present a list of all transversal Lagrangian star.

Keywords: Lagrangian stars, symplectic singularities, method of algebraic restrictions.
2000 MSC: 58K40, 53D12, 58A10

1. Introduction

The problem of classification of germs of s Lagrangian submanifolds L_{1}, \cdots, L_{s} intersecting at a common point p (defined in [J] as s-Lagrangian star at p) under the action of symplectomorphisms was introduced by Janeczko in $[\mathrm{J}]$. In the case of three Lagrangian subspaces in a symplectic vector space (M, ω) under the action of symplectic transformations, the natural invariant is the Maslov index ([LV]), that is, the signature of the Kashiwara quadratic form $Q\left(x_{1}, x_{2}, x_{3}\right)=\omega\left(x_{1}, x_{2}\right)+\omega\left(x_{2}, x_{3}\right)+$

[^0]
Transversal Lagrangian stars

$\omega\left(x_{3}, x_{1}\right)$ defined on the direct sum of the Lagrangian subspaces. Janeczko generalizes the Maslov index to the nonlinear case.

The aim of this paper is to obtain the symplectic classification of 3-Lagrangian stars two by two transversal in a symplectic space. For this purpose we use the method of algebraic restrictions introduced in [DJZ2]. We obtain a list of all transversal Lagrangian star.

A generalization of the Darboux-Givental Theorem ([AG]) to germs of quasihomogeneous subsets of the symplectic space was obtained in [DJZ2] and reduces the problem of symplectic classification of germs of quasi-homogeneous subsets to the problem of classification of algebraic restrictions of symplectic forms to these subsets. By this method, complete symplectic classifications of the $A-D-E$ singularities of planar curves and the S_{5} singularity were obtained in [DJZ2].

The method of algebraic restrictions was used to study the local symplectic algebra of 1-dimensional singular analytic varieties. It is proved in [D1] that the vector space of algebraic restrictions of closed 2-forms to a germ of 1-dimensional singular analytic variety is a finite-dimensional vector space.

The method of algebraic restrictions was also applied to the zero-dimensional symplectic isolated complete intersection singularities (see [D2]) and to other 1dimensional isolated complete intersection singularities: the S_{μ} symplectic singularities for $\mu>5$ in [DT1], the $T_{7}-T_{8}$ symplectic singularities in [DT2], the $W_{8}-W_{9}$ symplectic singularities in [T1] and the U_{7}, U_{8} and U_{9} symplectic singularities in [T2]. In [DJZ3] the method is used to construct a complete system of invariants in the problem of classifying singularities of immersed k-dimensional submanifolds of a symplectic $2 n$-manifold at a generic double point. In [ADW], the authors studied the local symplectic algebra of curves with semigroup $(4,5,6,7)$ by this method.

This paper is organized as follows. Section 2 contains basic definitions about Lagrangian stars and the formulation of the main result. We also explain why we use the method of algebraic restrictions for this problem. We recall the method of algebraic restrictions in Section 3. In Section 4 we reduce the problem of classification of algebraic restrictions of symplectic forms to the linear case. Finally in Section 5 we obtain the symplectic classification of 3-Lagrangian stars two by two transversal.

2. Lagrangian stars

Consider $\left(\mathbb{R}^{2 n}, \omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}\right)$ the $2 n$-dimensional symplectic space with coordinate system $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

Let $\left\{L_{1}, \ldots, L_{s}\right\}$ be a system of Lagrangian submanifolds of $\left(\mathbb{R}^{2 n}, \omega\right)$ intersecting at the origin.

F. Assunção de Brito Lira, W. Domitrz and R. Wik Atique

Definition $2.1([\mathrm{~J}])$. The germ of Lagrangian submanifolds $\left(\left\{L_{1}, \ldots, L_{s}\right\}, 0\right)$ is called s-Lagrangian star. If $s=2$ and L_{1} is transversal to L_{2} then the 2-Lagrangian star $\left(\left\{L_{1}, L_{2}\right\}, 0\right)$ is called the basic Lagrangian star. The 3-Lagrangian star is simply called a Lagrangian star. We denote $L=L_{1} \cup \cdots \cup L_{s}$.

Definition 2.2. The germ of a subset $N \subset\left(\mathbb{R}^{m}, 0\right)$ is called quasi-homogeneous if there exist a local coordinate system x_{1}, \ldots, x_{m} of $\left(\mathbb{R}^{m}, 0\right)$ and positive integers $\lambda_{1}, \ldots, \lambda_{m}$ with the following property: if $\left(a_{1}, \ldots, a_{m}\right) \in N$ then $\left(t^{\lambda_{1}} a_{1}, \ldots, t^{\lambda_{m}} a_{m}\right) \in$ N, for all $t \in[0,1]$. The integers $\lambda_{1}, \ldots, \lambda_{m}$ are called weights of the variables x_{1}, \ldots, x_{m}, respectively.

Let $E=\left(\left\{L_{1}, \ldots, L_{s}\right\}, 0\right)$ be an s-Lagrangian star. We call E a quasi-homogeneous s-Lagrangian star if $L=L_{1} \cup \cdots \cup L_{s}$ is a germ of a quasi-homogeneous subset. Moreover, E is called transversal if L_{1}, \ldots, L_{s} are two by two transversal intersecting only at the origin.

Given $E=\left(\left\{L_{1}, \ldots, L_{s}\right\}, 0\right)$ and $E^{\prime}=\left(\left\{L_{1}^{\prime}, \ldots, L^{\prime}{ }_{s}\right\}, 0\right)$ two s-Lagrangian stars we say that they are diffeomorphic if there exists a germ of diffeomorphism $\Phi:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right)$ such that $\Phi\left(L_{i}\right)=L_{j_{i}}^{\prime}$ for some permutation j_{i} of $\{1, \ldots, s\}$. When Φ is a germ of a symplectomorphism of $\left(\left(\mathbb{R}^{2 n}, \omega\right), 0\right)$ we say that E and E^{\prime} are symplectically equivalent (or equivalent).

The germ of a Langrangian submanifold of $\left(\mathbb{R}^{2 n}, \sum_{i=1}^{n} d x_{i} \wedge d x_{i}\right)$ is symplectically equivalent to $L_{1}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid x_{1}=\cdots=x_{n}=0\right\}$. The germ L_{2} at 0 of a Langrangian submanifold of $\left(\mathbb{R}^{2 n}, \sum_{i=1}^{n} d x_{i} \wedge d x_{i}\right)$ which is transversal to L_{1} at 0 can be desribed in the following way

$$
y_{i}=\frac{\partial S}{\partial x_{i}}\left(x_{1}, \cdots, x_{n}\right) \text { for } r=i, \cdots, n
$$

where S is a smooth function-germ on \mathbb{R}^{n}. Thus the transversal Lagrangian 2-star is symplectically equivalent to the basic Lagrangian $\operatorname{star}\left(\left\{L_{1}, L_{2}\right\}, 0\right)$ defined by $L_{1}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid x_{1}=\cdots=x_{n}=0\right\}$ and $L_{2}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid y_{1}=\cdots=y_{n}=0\right\}$, by a symplectomorphism of the following form

$$
\Phi: \mathbb{R}^{2 n} \ni(x, y) \mapsto\left(x_{1}, \cdots, x_{n}, y_{1}-\frac{\partial S}{\partial x_{1}}\left(x_{1}, \cdots, x_{n}\right), \cdots, y_{n}-\frac{\partial S}{\partial x_{n}}\left(x_{1}, \cdots, x_{n}\right)\right)
$$

It implies that a trasversal Lagrangian 3 -star is symplectically equivalent to a Lagrangian 3-star $\left(\left\{L_{1}, L_{2}, L_{3}\right\}, 0\right)$, where $L_{1}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid x_{1}=\cdots=x_{n}=0\right\}$, $L_{2}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid y_{1}=\cdots=y_{n}=0\right\}$ and L_{3} can be desribed in the following way

$$
y_{i}=\frac{\partial S}{\partial x_{i}}\left(x_{1}, \cdots, x_{n}\right) \text { for } r=i, \cdots, n
$$

Transversal Lagrangian stars

where S is a smooth function-germ on \mathbb{R}^{n}. Using the classical method for the classification of transversal Lagrangian 3 -star ($\left\{L_{1}, L_{2}, L_{3}\right\}, 0$) we should apply the symplectomorphisms which preserve the set $L_{1} \cup L_{2}$ to obtain the normal form of L_{3}. It is easy to see that such symplectomorphisms have following forms $\Phi(x, y)=$ $\left(\Phi_{1}(x, y), \Phi_{2}(x, y)\right)$ or $\Psi(x, y)=\left(\Psi_{1}(x, y), \Psi_{2}(x, y)\right)$, where $\Phi_{i}, \Psi_{i}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$ for $i=1,2$ such that $\Phi_{1}(0, y)=\Phi_{2}(x, 0)=\Psi_{1}(x, 0)=\Psi_{2}(0, y)=0$. A Hamiltonian vector field $X_{H}=\sum_{i=1}^{n} \frac{\partial H}{\partial y_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}} \frac{\partial}{\partial y_{i}}$ is tangent to $L_{1} \cup L_{2}$ if the Hamiltonian function-germ H satisfies the following system of equations $y_{j} \frac{\partial H}{\partial y_{i}}-x_{i} \frac{\partial H}{\partial x_{j}}=$ $\sum_{k=1}^{n} \sum_{l=1}^{n} x_{k} y_{l} g_{i, j, k, l}(x, y)$ for $i, j=1, \cdots, n$., where $g_{i, j, k, l}$ are function-germs on $\mathbb{R}^{2 n}$. Hamiltonian function-germs of the form $H(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} f_{i, j}(x, y)$, where $f_{i, j}$ are function-germs on $\mathbb{R}^{2 n}$, satisfy the above system of equations. So the classical method is complicated for trasversal Lagrangian 3-stars. Therefore we apply the method of algebraic restriction to obtain the following classification theorem, which is the main result of this paper.

Theorem 2.3. A transversal Lagrangian 3-star in $\left(\mathbb{R}^{2 n}, \sum_{i=1}^{n} d x_{i} \wedge d y_{i}\right)$ is symplectically equivalent to one and only one of $E^{s}=\left(\left\{L_{1}, L_{2}, L_{3}^{s}\right\}, 0\right)$, where

$$
\begin{gathered}
L_{1}=\left\{x_{1}=\cdots=x_{n}=0\right\}, \quad L_{2}=\left\{y_{1}=\cdots=y_{n}=0\right\} \\
L_{3}^{s}=\left\{x_{1}-y_{1}=\cdots=x_{s}-y_{s}=x_{s+1}+y_{s+1}=\cdots=x_{n}+y_{n}=0\right\},
\end{gathered}
$$

and s is a non-negative integer such that $s \leq \frac{n}{2}$.
Notations: Let θ be a k-form on $\left(\left(\mathbb{R}^{2 n}, \omega\right), 0\right)$ and let $E=\left(\left\{L_{1}, \ldots, L_{s}\right\}, 0\right)$ be a s-Lagrangian star.

1. The set of smooth points of L is denoted by L_{reg}.
2. The restriction of θ to the set $\left\{\left(p, v_{1}, \ldots, v_{k}\right) \mid p \in L_{j}\right.$ and $\left.v_{1}, \ldots, v_{k} \in T_{p} L_{j}\right\}$ is denoted by $\left.\theta\right|_{T L_{j}}, j=1, \ldots, s$.
3. Suppose $\theta(p)\left(u_{1}, \ldots, u_{k}\right)=0$ for every $p \in L_{\mathrm{reg}}$ and $u_{1}, \ldots, u_{k} \in T_{p} L_{\mathrm{reg}}$. In this case, we say that θ vanish on $T L_{\text {reg }}$.
All objects in this paper (functions, vector fields, k-forms, maps) are \mathbb{R}-analytic.

3. Method of algebraic restrictions

In this section we present the method of algebraic restrictions. More details can be found in [DJZ2].

Let M be a germ of smooth manifold. We denote by $\Lambda^{k}(M)$ the space of all germs at 0 of differential k-forms on M. Given a subset $N \subset M$ one introduces the following subspaces of $\Lambda^{k}(M)$:

$$
\begin{gathered}
\Lambda_{N}^{k}(M)=\left\{\omega \in \Lambda^{k}(M): \omega(x)=0, \text { for all } x \in N\right\}, \\
\mathscr{A}_{0}^{k}(N, M)=\left\{\alpha+d \beta: \alpha \in \Lambda_{N}^{k}(M), \beta \in \Lambda_{N}^{k-1}(M)\right\} .
\end{gathered}
$$

The notation $\omega(x)=0$ means that the k-linear form $\omega(x)$ vanishes for all k-tuple of vectors in $T_{x} M$, i. e. all coefficients of ω in some (and then any) local coordinate system vanish at the point x.

Definition 3.1 ([DJZ2]). Let N be a subset of M and let $\theta \in \Lambda^{k}(M)$. The algebraic restriction of θ to N is the equivalence class of θ in $\Lambda^{k}(M)$, where the equivalence is as follows: θ is equivalent to $\tilde{\theta}$ if $\theta-\tilde{\theta} \in \mathscr{A}_{0}^{k}(N, M)$. The algebraic restriction of θ to N is denoted by $[\theta]_{N}$.
Notation: Let θ be a k-form on M. Writing $[\theta]_{N}=0$ (or saying that θ has zero algebraic restriction to N) we mean that $[\theta]_{N}=[0]_{N}$, i.e. $\theta \in \mathscr{A}_{0}^{k}(N, M)$.
Remark 3.2. It is clear that if $\theta \in \mathscr{A}_{0}^{k}(N, M)$ then $d \theta \in \mathscr{A}_{0}^{k+1}(N, M)$. Moreover, if θ_{1} is a k-form such that $\left[\theta_{1}\right]_{N}=0$ then $\left[\theta_{1} \wedge \theta_{2}\right]_{N}=0$ for every q-form θ_{2}. Then if θ_{1} is a k-form and if θ_{2} is a q-form the algebraic restrictions $d\left[\theta_{1}\right]_{N}:=\left[d \theta_{1}\right]_{N}$ and $\left[\theta_{1}\right]_{N} \wedge\left[\theta_{2}\right]_{N}:=\left[\theta_{1} \wedge \theta_{2}\right]_{N}$ are well defined.

Let M and \tilde{M} be manifolds and $\Phi: \tilde{M} \rightarrow M$ a local diffeomorphism. Let N be a subset of M. It is clear that $\Phi^{*} \mathscr{A}_{0}^{k}(N, M)=\mathscr{A}_{0}^{k}\left(\Phi^{-1}(N), \tilde{M}\right)$. Therefore the action of the group of diffeomorphisms can be defined as follows: $\Phi^{*}\left([\theta]_{N}\right):=\left[\Phi^{*} \theta\right]_{\Phi^{-1}(N)}$, where θ is an arbitrary k-form on M. Let $\tilde{N} \subset \tilde{M}$. Two algebraic restrictions $[\theta]_{N}$ and $[\tilde{\theta}]_{\tilde{N}}$ are called diffeomorphic if there exists a local diffeomorphism form \tilde{M} to M sending one algebraic restriction to another. This of course requires that the diffeomorphism sends \tilde{N} to N. If $M=\tilde{M}$ and $N=\tilde{N}$, Φ is called a local symmetry of N.

The method of algebraic restrictions is based on the following result:
Theorem 3.3. (i) (Theorem A in [DJZ2]) Let N be a quasi-homogeneous subset of $\mathbb{R}^{2 n}$. Let ω_{0}, ω_{1} be symplectic forms on $\mathbb{R}^{2 n}$ with the same algebraic restriction to N. There exists a local diffeomorphism Φ such that $\Phi(x)=x$ for any $x \in N$ and $\Phi^{*} \omega_{1}=\omega_{0}$.
(ii) (Corollary of (i)) Let $\tilde{E}=\left(\left\{\tilde{L}_{1}, \ldots, \tilde{L}_{s}\right\}, 0\right)$ and $\hat{E}=\left(\left\{\hat{L_{1}}, \ldots, \hat{L_{s}}\right\}, 0\right)$ be s Lagrangian stars diffeomorphic to a quasi-homogeneous s-Lagrangian star $E=$ $\left(\left\{L_{1}, \ldots, L_{s}\right\}, 0\right)$. Then \tilde{E} and \hat{E} are equivalents if and only if $[\omega]_{\hat{L}}$ and $[\omega]_{\tilde{L}}$ are diffeomorphic.
Remark 3.4. (i) Let $E=\left(\left\{L_{1}, L_{2}, L_{3}\right\}, 0\right)$ be a transversal quasi-homogeneous Lagrangian star. Due to Theorem 3.3, the symplectic classification of transversal Lagrangian stars diffeomorphic to E reduces to the classification of algebraic restrictions of symplectic forms to L vanishing on $T L_{\mathrm{reg}}$.

Transversal Lagrangian stars

(ii) Let $\tilde{E}=\left(\left\{\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right\}, 0\right)$ be a transversal Lagrangian star in $\left(\left(\mathbb{R}^{2 n}, \omega\right), 0\right)$. It is not difficult to prove that there exists a smooth coordinate change in $\left(\mathbb{R}^{2 n}, 0\right)$ such that, for all i, $\tilde{L}_{i}=L_{i}$, where $L_{1}=\left\{y_{1}=\cdots=y_{n}=0\right\}, L_{2}=\left\{x_{1}=\right.$ $\left.\cdots=x_{n}=0\right\}$ and $L_{3}=\left\{x_{1}-y_{1}=\cdots=x_{n}-y_{n}=0\right\}$.

Definition 3.5. The germ of a function, of a differential k-form, or of a vector field α on $\left(\mathbb{R}^{m}, 0\right)$ is quasi-homogeneous in a coordinate system $\left(x_{1}, \ldots, x_{m}\right)$ on $\left(\mathbb{R}^{m}, 0\right)$ with positive weights $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ if $\mathcal{L}_{E} \alpha=\delta \alpha$, where $E=\sum_{i=1}^{m} \lambda_{i} x_{i} \partial / \partial x_{i}$ is the germ of the Euler vector field on $\left(\mathbb{R}^{m}, 0\right)$ and δ is a real number called the quasi-degree.

It is easy to show that α is quasi-homogeneous in a coordinate system $\left(x_{1}, \ldots, x_{m}\right)$ with weights $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ if and only if $F_{t}^{*} \alpha=t^{\delta} \alpha$, where $F_{t}\left(x_{1}, \ldots, x_{m}\right)=$ $\left(t^{\lambda_{1}} x_{1}, \ldots, t^{\lambda_{m}} x_{m}\right)$. Thus germs of quasi-homogeneous functions of quasi-degree δ are germs of weighted homogeneous polynomials of degree δ. The coefficient $f_{i_{1}, \ldots, i_{k}}$ of the quasi-homogeneous differential k-form $\sum f_{i_{1} \cdots i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ of quasi-degree δ is a weighted homogeneous polynomial of degree $\delta-\sum_{j=1}^{k} \lambda_{i_{j}}$. The coefficient f_{i} of the quasi-homogeneous vector field $\sum_{i=1}^{m} f_{i} \partial / \partial x_{i}$ of quasi-degree δ is a weighted homogeneous polynomial of degree $\delta+\lambda_{i}$.

Let θ be the germ of a k-form on $\left(\mathbb{R}^{m}, 0\right)$. We denote by $\theta^{(r)}$ the quasi-homogeneous part of quasi-degree r in the Taylor series of θ. It is clear that if a smooth function h vanishes on a quasi-homogeneous set N then $h^{(r)}$ also vanishes on N, for every non-negative r. This simple observation implies the following result:

Proposition 3.6. If θ is a k-form on $\left(\mathbb{R}^{m}, 0\right)$ with $[\theta]_{N}=0$ then $\left[\theta^{(r)}\right]_{N}=0$, for any r.

Proposition 3.6 allows us to define the quasi-homogeneous part of an algebraic restriction.

Definition 3.7. Let $a=[\theta]_{N}$ be an algebraic restriction of $a k$-form θ to a germ of quasi-homogeneous subset $N \subset\left(\mathbb{R}^{m}, 0\right)$. We define the quasi-homogeneous part of quasi-degree r of a by $a^{(r)}:=\left[\theta^{(r)}\right]_{N}$. When $a=a^{(r)}$ we say that a is quasihomogeneous of quasi-degree r.

Proposition 3.8 ([D1]). If X is the germ of a quasi-homogeneous vector field of quasi-degree i and ω is the germ of a quasi-homogeneous differential form of quasidegree j then $\mathcal{L}_{X} \omega$ is the germ of a quasi-homogeneous differential form of quasidegree $i+j$.

F. Assunção de Brito Lira, W. Domitrz and R. Wik Atique

Throughout this paper, $E=\left(\left\{L_{1}, L_{2}, L_{3}\right\}, 0\right)$ is the Lagrangian star in $\left(\left(\mathbb{R}^{2 n}, \omega\right), 0\right)$ where $L_{1}=\left\{y_{1}=\cdots=y_{n}=0\right\}, L_{2}=\left\{x_{1}=\cdots=x_{n}=0\right\}$ and $L_{3}=\left\{x_{1}-y_{1}=\cdots=x_{n}-y_{n}=0\right\}$.

Let k be a non-negative integer. Let us fix some notations:

- $\Lambda_{\mathrm{reg}}^{k}\left(\mathbb{R}^{2 n}\right)$: the vector space of the k-forms vanishing on $T L_{\mathrm{reg}}$.
- $\left[\Lambda_{\mathrm{reg}}^{k}\left(\mathbb{R}^{2 n}\right)\right]_{L}$: the vector space of algebraic restrictions to L of elements of $\Lambda_{\text {reg }}^{k}\left(\mathbb{R}^{2 n}\right)$.
- $\Lambda_{\mathrm{reg}}^{k, c l}\left(\mathbb{R}^{2 n}\right)$: the subspace of $\Lambda_{\mathrm{reg}}^{k}\left(\mathbb{R}^{2 n}\right)$ consisting of closed k-forms vanishing on $T L_{\mathrm{reg}}$.
- $\left[\Lambda_{\text {reg }}^{k, c l}\left(\mathbb{R}^{2 n}\right)\right]_{L}$: the subspace of $\left[\Lambda_{\text {reg }}^{k}\left(\mathbb{R}^{2 n}\right)\right]_{L}$ consisting of algebraic restrictions to L of elements of $\Lambda_{\text {reg }}^{k, \mathrm{cl}}\left(\mathbb{R}^{2 n}\right)$.

4. Reduction to the linear case

In this section we reduce the classification of the algebraic restrictions to L of symplectic forms vanishing on $T L_{\mathrm{reg}}$ under the action of local symmetries of L to the classification of the algebraic restrictions to L of homogeneous symplectic forms of degree 2 under the action of linear local symmetries of L.

The first step is to find a finite set of generators of $\left[\Lambda_{\mathrm{reg}}^{2, \mathrm{cl}}\left(\mathbb{R}^{2 n}\right)\right]_{L}$. For this we need some results.

Proposition 4.1. Let θ be a k-form in $\Lambda_{\mathrm{reg}}^{k}\left(\mathbb{R}^{2 n}\right)$. Then $\theta^{(r)} \in \Lambda_{\mathrm{reg}}^{k}\left(\mathbb{R}^{2 n}\right)$, for all non-negative integer $r \geq k$.
Proof. Since θ is a k-form then $\theta^{(r)}=0$ for all $r=0, \ldots, k-1$. Let $r \geq k$. Writing θ in its Taylor series we have

$$
\theta=\theta^{(k)}+\cdots+\theta^{(r)}+T,
$$

where $\theta^{(s)}$ is a homogeneous k-form of degree $s, s=k, \ldots, r$, and T is a k-form with $T^{(i)}=0, i=0, \ldots, r$.

Let $p \in L_{j}$ and $u_{1}, \ldots, u_{k} \in T_{p} L_{j}=L_{j}$, for some $j \in\{1,2,3\}$. Let $u=$ $\left(u_{1}, \ldots, u_{k}\right)$ then for $t \neq 0$ small enough we have

$$
0=\theta(t p) u=\theta^{(k)}(p) u+\cdots+t^{r-k} \theta^{(r)}(p) u+T(t p) u
$$

Since $\lim _{t \rightarrow 0} \frac{T(t p)}{t^{r-k}}=0$ we conclude that $\theta^{(r)}$ vanishes on $T L_{j}$, for all $j \in\{1,2,3\}$. Therefore $\theta^{(r)}$ vanishes on $T L_{\mathrm{reg}}$.

Transversal Lagrangian stars

Next we show that the generators of $\left[\Lambda_{\mathrm{reg}}^{2, \mathrm{cl}}\left(\mathbb{R}^{2 n}\right)\right]_{L}$ are obtained as derivatives of the generators of $\left[\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)\right]_{L}$. In this case we reduce our problem to 1 -forms.
Proposition 4.2. Let σ be a 2-form in $\Lambda_{\mathrm{reg}}^{2, c l}\left(\mathbb{R}^{2 n}\right)$. Then there exists a 1-form γ in $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$ such that $\sigma=d \gamma$.
Proof. We use the method described in [DJZ1]. Define $F:[0,1] \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ given by $F(t, x, y)=F_{t}(x, y)=(t x, t y)$. Let X_{t} be the vector field associated with the equation $\frac{d F_{t}}{d t}=X_{t} \circ F_{t}$, for $0<t_{0} \leq t \leq 1$. We have

$$
\sigma-F_{t_{0}}^{*} \sigma=\int_{t_{0}}^{1} \frac{d}{d t} F_{t}^{*} \sigma d t=\int_{t_{0}}^{1} F_{t}^{*}\left(\mathcal{L}_{X_{t}} \sigma\right) d t=\int_{t_{0}}^{1} F_{t}^{*}\left(d\left(i_{X_{t}} \sigma\right)\right) d t=d \int_{t_{0}}^{1} F_{t}^{*}\left(i_{X_{t}} \sigma\right) d t
$$

Letting $t_{0} \rightarrow 0$ we get $\sigma=d \beta$ where $\beta=\int_{0}^{1} F_{t}^{*}\left(i_{X_{t}} \sigma\right) d t$. For every $p \in L_{\mathrm{reg}}$ and $v \in T_{p} L_{\text {reg }}$ we have

$$
F_{t}^{*}\left(i_{X_{t}} \sigma\right)(p) \cdot v=\sigma(t p)\left(X_{t} \circ F_{t}(p), d F_{t}(p) \cdot v\right)=0
$$

for all $t \in(0,1]$. Then $\beta(p) \cdot v=0$.
Proposition 4.3. If $\gamma \in \Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$ then $d \gamma \in \Lambda_{\mathrm{reg}}^{2, c l}\left(\mathbb{R}^{2 n}\right)$.
Proof. We can write $\gamma=\sum_{j=1}^{n}\left(f_{j} d x_{j}+g_{j} d y_{j}\right)$, where f_{j} and g_{j} are germs of functions on $\left(\mathbb{R}^{2 n}, 0\right), j=1, \ldots, n$. We have

$$
d \gamma=\sum_{i, j=1}^{n}\left(\left(\frac{\partial f_{j}}{\partial x_{i}} d x_{i}+\frac{\partial f_{j}}{\partial y_{i}} d y_{i}\right) \wedge d x_{j}+\left(\frac{\partial g_{j}}{\partial x_{i}} d x_{i}+\frac{\partial g_{j}}{\partial y_{i}} d y_{i}\right) \wedge d y_{j}\right)
$$

As $\left.\gamma\right|_{T L_{\mathrm{reg}}}=0$ then $f_{j}(x, 0)=0, g_{j}(0, y)=0$ and $\left(f_{j}+g_{j}\right)(z, z)=0$. Thus $\left.d \gamma\right|_{T L_{1}}=\left.d \gamma\right|_{T L_{2}}=0$ and

$$
\left.d \gamma\right|_{T L_{3}}=\sum_{i, j=1}^{n}\left(\left(\frac{\partial f_{j}}{\partial z_{i}}(z, z)+\frac{\partial g_{j}}{\partial z_{i}}(z, z)\right) d z_{i} \wedge d z_{j}\right)=0
$$

Due to Proposition 4.1, $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$ is generated by homogeneous 1-forms. Next we find generators of $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$ homogeneous of degree ≤ 4. In Lemma 4.4, we prove that the elements in $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$ homogeneous of degree ≥ 5 have zero algebraic restriction to L. We conclude that $\left[\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)\right]_{L}$ is a finite dimensional vector space

F. Assunģão de Brito Lira, W. Domitrz and R. Wik Atique

generated by algebraic restrictions to L of homogeneous 1-forms vanishing on $T L_{\mathrm{reg}}$ of degree ≤ 4.

Clearly there is no homogeneous 1-forms of degree 1 in $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$.

Generators of degree 2:

Let $\gamma=\sum_{i, j=1}^{n}\left(a_{i j} x_{i} d x_{j}+b_{i j} x_{i} d y_{j}+c_{i j} y_{i} d x_{j}+e_{i j} y_{i} d y_{j}\right)$ be a 1-form in $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$. It is easy to see that $\sum_{i, j=1}^{n} a_{i j} x_{i} d x_{j}=\sum_{i, j=1}^{n} e_{i j} y_{i} d y_{j}=0$ and $b_{i j}=-c_{j i}$, for all $i, j \in\{1, \ldots, n\}$. Thus the homogeneous 1-forms of degree 2 in $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$ are linear combination of the 1 -forms:

- $x_{i} d y_{j}-y_{i} d x_{j}, \quad i, j \in\{1, \ldots, n\}$.

Analogously we find the generators of degree 3 and 4 .

Generators of degree 3:

- $x_{i} x_{j} d y_{k}-x_{i} y_{j} d y_{k}$
- $x_{i} x_{j} d y_{k}-y_{i} x_{j} d x_{k}$
- $x_{i} x_{j} d y_{k}-y_{i} x_{j} d y_{k}$
- $x_{i} x_{j} d y_{k}-x_{i} y_{j} d x_{k}$
- $x_{i} x_{j} d y_{k}-y_{i} y_{j} d x_{k}$
where $i, j, k \in\{1, \ldots, n\}$.

Generators of degree 4:

- $x_{i} x_{j} x_{k} d y_{l}-x_{i} x_{j} y_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} x_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} x_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} x_{j} x_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} x_{j} x_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} y_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} y_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} x_{j} y_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} x_{j} y_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} y_{j} x_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} y_{j} x_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} x_{j} y_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} y_{j} y_{k} d x_{l}$
where $i, j, k, l \in\{1, \ldots, n\}$.
Lemma 4.4. The 1 -forms homogeneous of degree greater than or equal to 5 in $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$ have zero algebraic restriction to L.

Proof. Let $\tilde{\gamma}=\sum_{j=1}^{n}\left(f_{j}(x, y) d x_{j}+g_{j}(x, y) d y_{j}\right)$ in $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$, where f_{j}, g_{j} are germs of functions on $\left(\mathbb{R}^{2 n}, 0\right), i=1, \ldots, n$. As $\tilde{\gamma}$ vanishes on $T L_{1}$ and $T L_{2}$ then $\tilde{\gamma}=$ $\sum_{i, j=1}^{n}\left(y_{i} f_{i j}(x, y) d x_{j}+x_{i} g_{i j}(x, y) d y_{j}\right)$, where $f_{i j}, g_{i j}$ are germs of functions on $\left(\mathbb{R}^{2 n}, 0\right)$, $i, j=1, \ldots, n$.

Let γ be a homogeneous 1-form of degree $l+1 \geq 5$ in $\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$, then γ is of the form:

$$
\begin{aligned}
\gamma= & \sum a_{1, i_{1} \cdots i_{l} k} y_{i_{1}} x_{i_{2}} \cdots x_{i_{l}} d x_{k}+\cdots+\sum a_{l, i_{1} \cdots i_{l} k} y_{i_{1}} \cdots y_{i_{l}} d x_{k}+ \\
& \sum b_{1, i_{1} \cdots i_{l} k} x_{i_{1}} y_{i_{2}} \cdots y_{i_{l}} d y_{k}+\cdots+\sum b_{l, i_{1} \cdots i_{l} k} x_{i_{1}} \cdots x_{i_{l}} d y_{k}
\end{aligned}
$$

where $i_{1}, \ldots, i_{l}, k \in\{1, \ldots, n\}$. As $\left.\gamma\right|_{T L_{3}}=0$, for $i_{1}, \ldots, i_{l}, k \in\{1, \ldots, n\}$ one has

$$
\sum_{\sigma \in S_{l}}\left(a_{1, \sigma\left(i_{1}\right) \cdots \sigma\left(i_{l}\right) k}+\cdots+a_{l, \sigma\left(i_{1}\right) \cdots \sigma\left(i_{l}\right) k}+b_{1, \sigma\left(i_{1}\right) \cdots \sigma\left(i_{l}\right) k}+\cdots+b_{l, \sigma\left(i_{1}\right) \cdots \sigma\left(i_{l}\right) k}\right)=0
$$

where S_{l} is the group of permutation of $\left\{i_{1}, \ldots, i_{l}\right\}$. Thus the 1-forms homogeneous of degree $l+1$ in $\Lambda_{\text {reg }}^{1}\left(\mathbb{R}^{2 n}\right)$ are generated by 1 -forms of the type

$$
\begin{aligned}
& \rho_{t \sigma}=y_{i_{1}} y_{i_{2}} x_{i_{3}} \cdots x_{i_{l}} d x_{k}-x_{\sigma\left(i_{1}\right)} \cdots x_{\sigma\left(i_{t}\right)} y_{\sigma\left(i_{t+1}\right)} \cdots y_{\sigma\left(i_{l}\right)} d x_{k} \\
& \xi_{t \sigma}=y_{i_{1}} y_{i_{2}} x_{i_{3}} \cdots x_{i_{l}} d x_{k}-y_{\sigma\left(i_{1}\right)} \cdots y_{\sigma\left(i_{t}\right)} x_{\sigma\left(i_{t+1}\right)} \cdots x_{\sigma\left(i_{l}\right)} d y_{k}
\end{aligned}
$$

where $\sigma \in S_{l}$ and $0 \leq t \leq l-1$.
Let $t \in\{1, \ldots, l-1\}$. Observe that the polynomial $y_{i_{1}} y_{i_{2}} x_{i_{3}} \cdots x_{i_{l}} x_{k}-$ $x_{\sigma\left(i_{1}\right)} \cdots x_{\sigma\left(i_{t}\right)} y_{\sigma\left(i_{t+1}\right)} \cdots y_{\sigma\left(i_{l}\right)} x_{k}$ vanishes on L. Then the 1 -forms of the type $\rho_{t \sigma}$ and $\xi_{t \sigma}$ are generated by

$$
\begin{aligned}
& \rho=y_{i_{1}} y_{i_{2}} x_{i_{3}} \cdots x_{i_{l}} d x_{k}-y_{i_{1}} \cdots y_{i_{l}} d x_{k} \\
& \xi_{1}=y_{i_{1}} y_{i_{2}} x_{i_{3}} \cdots x_{i_{l}} d x_{k}-x_{i_{1}} \cdots x_{i_{l}} d y_{k} \\
& \xi_{2}=y_{i_{1}} y_{i_{2}} x_{i_{3}} \cdots x_{i_{l}}\left(d x_{k}-d y_{k}\right)
\end{aligned}
$$

Note that the polynomial $h(x, y)=y_{i_{1}} y_{i_{2}} x_{i_{3}} \cdots x_{i_{l}}\left(x_{k}-y_{k}\right)$ vanishes on L. Then the 1-form $d h$ has zero algebraic restriction to L. We have $d h=\xi_{2}+\hat{\gamma}$, where

$$
\begin{aligned}
\hat{\gamma} & =y_{i_{2}} x_{i_{3}} \cdots x_{i_{l}}\left(x_{k}-y_{k}\right) d y_{i_{1}}+y_{i_{1}} x_{i_{3}} \cdots x_{i_{l}}\left(x_{k}-y_{k}\right) d y_{i_{2}} \\
& +\sum_{u=3}^{l} y_{i_{1}} y_{i_{2}} x_{i_{3}} \cdots x_{i_{u-1}} x_{i_{u+1}} \cdots x_{i_{l}}\left(x_{k}-y_{k}\right) d x_{u} .
\end{aligned}
$$

Clearly $\hat{\gamma}$ has zero algebraic restriction to L. Then ξ_{2} has zero algebraic restriction to L. The proof that 1 -forms of the type ρ and ξ_{1} has zero algebraic restriction to L follows from the fact that ξ_{2} has zero algebraic restriction to L.

F. Assunção de Brito Lira, W. Domitrz and R. Wik Atique

The following result provides a finite set of generators of $\left[\Lambda_{\mathrm{reg}}^{2, \mathrm{cl}}\left(\mathbb{R}^{2 n}\right)\right]_{L}$.
Proposition 4.5. A finite set of generators of $\left[\Lambda_{\mathrm{reg}}^{2, c l}\left(\mathbb{R}^{2 n}\right)\right]_{L}$ is given by:

- Degree 2: $\left[d x_{i} \wedge d y_{j}-d y_{i} \wedge d x_{j}\right]_{L}, \quad 1 \leq i \leq j \leq n$;
- Degree 3: $\left[d\left(x_{i} y_{j}\right) \wedge d x_{k}-d\left(y_{i} y_{j}\right) \wedge d x_{k}\right]_{L}, \quad\left[d\left(x_{i} y_{j}\right) \wedge d x_{k}-d\left(x_{i} y_{j}\right) \wedge d y_{k}\right]_{L}, \quad 1 \leq$ $i \leq j \leq n, \quad 1 \leq k \leq n$;
- Degree 4: $\left[d\left(x_{i} x_{j} y_{k}\right) \wedge d x_{l}-d\left(y_{i} y_{j} x_{k}\right) \wedge d y_{l}\right]_{L}, 1 \leq i \leq j \leq k \leq n, 1 \leq l \leq n$.

Proof. According to Propositions 4.2 and 4.3, the derivatives of the generators of $\left[\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)\right]_{L}$ generate $\left[\Lambda_{\mathrm{reg}}^{2, \mathrm{cl}}\left(\mathbb{R}^{2 n}\right)\right]_{L}$. Therefore it is sufficient to verify that the algebraic restrictions represented by

- $x_{i} d y_{j}-y_{i} d x_{j}, \quad 1 \leq i \leq j \leq n$
- $x_{i} y_{j} d x_{k}-y_{i} y_{j} d x_{k}, x_{i} y_{j} d x_{k}-x_{i} y_{j} d y_{k} 1 \leq i \leq j \leq n, 1 \leq k \leq n$
- $x_{i} x_{j} y_{k} d x_{l}-y_{i} y_{j} x_{k} d y_{l}, \quad 1 \leq i \leq j \leq k \leq n, 1 \leq l \leq n$
generate $\left[\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)\right]_{L}$. According to Proposition 4.1, we fix a degree and find generators for this fixed degree. Since the calculation is similar for each degree, we find a set of homogeneous generators of degree 4. The homogeneous 1-forms vanishing on $T L_{\mathrm{reg}}$ of degree 4 are generated by:
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} x_{j} y_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} x_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} x_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} x_{j} x_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} x_{j} x_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} y_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} y_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} x_{j} y_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} y_{j} x_{k} d y_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} x_{j} y_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-x_{i} x_{j} y_{k} d x_{l}$
- $x_{i} x_{j} x_{k} d y_{l}-y_{i} y_{j} x_{k} d x_{l}$
where $i, j, k, l \in\{1, \ldots, n\}$. Adding a zero algebraic restriction to L of the form $\left[h(x, y) d x_{l}\right]_{L}$ and $\left[h(x, y) d y_{l}\right]_{L}$, where h is a polynomial vanishing on L, we reduce the generators of degree 4 to the following:

Transversal Lagrangian stars

- $\left[x_{i} x_{j} x_{k} d y_{l}-x_{i} x_{j} y_{k} d y_{l}\right]_{L}$
- $\left[x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} y_{k} d x_{l}\right]_{L}$
- $\left[x_{i} x_{j} x_{k} d y_{l}-y_{i} y_{j} y_{k} d x_{l}\right]_{L}$
where $i, j, k, l \in\{1, \ldots, n\}$. Note that $d\left(x_{i} x_{j} x_{k} y_{l}-x_{i} x_{j} y_{k} y_{l}\right) \in \mathscr{A}_{0}^{1}\left(L,\left(\mathbb{R}^{2 n}, 0\right)\right)$. Moreover,

$$
\begin{aligned}
d\left(x_{i} x_{j} x_{k} y_{l}-x_{i} x_{j} y_{k} y_{l}\right)= & \left(x_{j} x_{k} y_{l}-x_{j} y_{k} y_{l}\right) d x_{i}+\left(x_{i} x_{k} y_{l}-x_{i} y_{k} y_{l}\right) d x_{j}+ \\
& x_{i} x_{j} y_{l} d x_{k}-x_{i} x_{j} y_{l} d y_{k}+\left(x_{i} x_{j} x_{k}-x_{i} x_{j} y_{k}\right) d y_{l} .
\end{aligned}
$$

Then the algebraic restrictions of the type $\left[x_{i} x_{j} x_{k} d y_{l}-x_{i} x_{j} y_{k} d y_{l}\right]_{L}$ are generated by algebraic restrictions of the type $\left[x_{i} x_{j} y_{k} d y_{l}-y_{i} y_{j} x_{k} d x_{l}\right]_{L}, i, j, k, l \in\{1, \ldots, n\}$. Similarly, $\left[x_{i} x_{j} x_{k} d y_{l}-x_{i} y_{j} y_{k} d x_{l}\right]_{L}$ and $\left[x_{i} x_{j} x_{k} d y_{l}-y_{i} y_{j} y_{k} d x_{l}\right]_{L}$ are generated by $\left[x_{i} x_{j} y_{k} d y_{l}-y_{i} y_{j} x_{k} d x_{l}\right]_{L}, i, j, k, l \in\{1, \ldots, n\}$.

The algebraic restrictions

$$
\left[x_{i} x_{j} y_{k} d x_{l}-y_{i} y_{j} x_{k} d y_{l}\right]_{L}, \quad 1 \leq i \leq j \leq k \leq n, 1 \leq l \leq n
$$

generate the set algebraic restrictions of the 1-forms homogeneous of degree 4 in $\left[\Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)\right]_{L}$ since for all permutation of the indices i, j, k the algebraic restrictions of the type $\left[x_{i} x_{j} y_{k} d x_{l}-y_{i} y_{j} x_{k} d y_{l}\right]_{L}$ are the same.

Definition 4.6. A germ of vector field η on $\left(\mathbb{R}^{m}, 0\right)$ is liftable over a multigerm $F=\left\{F_{1}, \ldots, F_{s}\right\}:\left(\mathbb{R}^{k}, S\right) \rightarrow\left(\mathbb{R}^{m}, 0\right)$ if there exist germs of vector fields ξ_{1}, \ldots, ξ_{s} on $\left(\mathbb{R}^{k}, 0\right)$ such that

$$
d F_{i} \circ \xi_{i}=\eta \circ F_{i}, \quad i=1, \ldots, s
$$

We denote the set of the germs of liftable vector fields over F by $\operatorname{Lift}(F)$.
Consider the multigerm $F:\left\{F_{1}, F_{2}, F_{3}\right\}:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right)$ defined by $F_{1}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right), F_{2}\left(y_{1}, \ldots, y_{n}\right)=\left(0, \ldots, 0, y_{1}, \ldots, y_{n}\right)$ and $F_{3}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}, \ldots, z_{n}, z_{1}, \ldots, z_{n}\right)$.

Proposition 4.7. The germs of liftable vector fields over F are of the form $\sum_{i=1}^{n}\left(X_{i} \frac{\partial}{\partial x_{i}}+Y_{i} \frac{\partial}{\partial y_{i}}\right)$, where $X_{i} \in\left\langle x_{1}, \ldots, x_{n}\right\rangle, Y_{i} \in\left\langle y_{1}, \ldots, y_{n}\right\rangle$ and $X_{i}-Y_{i} \in$ $\left\langle x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right\rangle, i=1, \ldots, n$.

F. Assunção de Brito Lira, W. Domitrz and R. Wik Atique

Proof. Let $\eta=\sum_{i=1}^{n}\left(X_{i} \frac{\partial}{\partial x_{i}}+Y_{i} \frac{\partial}{\partial y_{i}}\right)$ be a germ of a vector field on $\left(\mathbb{R}^{2 n}, 0\right)$ where X_{i}, Y_{i} are as above. Consider the germs of the vector fields $\xi_{1}(x)=\sum_{i=1}^{n} X_{i}(x, 0) \frac{\partial}{\partial x_{i}}$, $\xi_{2}(y)=\sum_{i=1}^{n} Y_{i}(0, y) \frac{\partial}{\partial y_{i}}$ and $\xi_{3}(z)=\sum_{i=1}^{n} X_{i}(z, z) \frac{\partial}{\partial z_{i}}$. Clearly $d F_{i} \circ \xi_{i}=\eta \circ F_{i}$, $i=1,2,3$. Then η is liftable over F.

Let $W=\sum_{i=1}^{n}\left(U_{i} \frac{\partial}{\partial x_{i}}+V_{i} \frac{\partial}{\partial y_{i}}\right) \in \operatorname{Lift}(F)$. Then there exist $\rho_{1}, \rho_{2}, \rho_{3}$ germs of vector fields on \mathbb{R}^{n} such that $W \circ F_{i}=d F_{i} \circ \rho_{i}, i=1,2,3$. Writing $\rho_{1}(x)=$ $\sum_{j=1}^{n} \rho_{1}^{j}(x) \frac{\partial}{\partial x_{j}}$ for some germs of functions $\rho_{1}^{j}, j=1, \ldots, n$, one has

$$
d F_{1}(x) \cdot \rho_{1}(x)=\left(\rho_{1}^{1}(x), \ldots, \rho_{1}^{n}(x), 0, \ldots, 0\right)
$$

Then $V_{i} \in\left\langle y_{1}, \ldots, y_{n}\right\rangle$, for all $i \in\{1, \ldots, n\}$. Analogously we have $U_{i} \in\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $U_{i}-V_{i} \in\left\langle x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right\rangle$, for all $i=1, \ldots, n$.

The next result establishes a relation between liftable and tangent vector fields.
Proposition 4.8. If $\eta \in \operatorname{Lift}(F)$ then η is tangent to L.
Proof. Let h be a germ of function vanishing on L. There exist germs of vector fields ξ_{i} such that $\eta \circ F_{i}=d F_{i} \circ \xi_{i}, i=1,2,3$. If $p \in\left(\mathbb{R}^{n}, 0\right)$ then

$$
\begin{aligned}
(d h \circ \eta)\left(F_{i}(p)\right) & =d h\left(F_{i}(p)\right) \cdot \eta\left(F_{i}(p)\right)=d h\left(F_{i}(p)\right) \cdot d F_{i}(p) \cdot \xi_{i}(p) \\
& =d\left(h \circ F_{i}\right)(p) \cdot \xi_{i}(p)=0,
\end{aligned}
$$

since $h \circ F_{i} \equiv 0$ on $\left(\mathbb{R}^{n}, 0\right)$.
Proposition 4.9. Let $\eta \in \operatorname{Lift}(F)$ and let θ be a k-form with zero algebraic restriction to L. Then $\mathcal{L}_{\eta} \theta$ has zero algebraic restriction to L.

Proof. It follows from the fact that η is tangent to L and $\mathcal{L}_{\eta}(d \beta)=d\left(\mathcal{L}_{\eta} \beta\right)$, for all ($k-1$)-form β.

Proposition 4.10. Let $\sigma \in \Lambda_{\mathrm{reg}}^{2, c l}\left(\mathbb{R}^{2 n}\right)$ and $\eta \in \operatorname{Lift}(F)$ then $\mathcal{L}_{\eta} \sigma \in \Lambda_{\mathrm{reg}}^{2, c l}\left(\mathbb{R}^{2 n}\right)$.
Proof. By Proposition 4.2 there exists a 1 -form $\gamma \in \Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$ such that $\sigma=d \gamma$. Thus, $\mathcal{L}_{\eta} \sigma=\mathcal{L}_{\eta} d \gamma=d \mathcal{L}_{\eta} \gamma$. By Proposition 4.3, it is sufficient to prove that $\mathcal{L}_{\eta} \gamma$ vanishes on $T L_{\text {reg }}$.

Let $\gamma=\sum_{j=1}^{n}\left(f_{j}(x, y) d x_{j}+g_{j}(x, y) d y_{j}\right) \in \Lambda_{\mathrm{reg}}^{1}\left(\mathbb{R}^{2 n}\right)$ and let X_{j}, Y_{j} be germs of functions, $j=1, \ldots, n$, such that $\eta=\sum_{j=1}^{n}\left(X_{j} \frac{\partial}{\partial x_{j}}+Y_{j} \frac{\partial}{\partial y_{j}}\right)$. As γ vanishes on

Transversal Lagrangian stars

$T L_{\mathrm{reg}}$ we have $f_{j}(x, 0)=0, g_{j}(0, y)=0$ and $\left(f_{j}+g_{j}\right)(z, z)=0$. Then

$$
\begin{aligned}
& \mathcal{L}_{\eta} \gamma=\sum_{i, j=1}^{n}\left(\frac{\partial\left(f_{j} X_{j}\right)}{\partial x_{i}} d x_{i}+\frac{\partial\left(f_{j} X_{j}\right)}{\partial y_{i}} d y_{i}+\frac{\partial\left(g_{j} Y_{j}\right)}{\partial x_{i}} d x_{i}+\frac{\partial\left(g_{j} Y_{j}\right)}{\partial y_{i}} d y_{i}\right) \\
& +\sum_{i, j=1}^{n}\left(\frac{\partial f_{j}}{\partial x_{i}}\left(X_{i} d x_{j}-X_{j} d x_{i}\right)+\frac{\partial f_{j}}{\partial y_{i}}\left(Y_{i} d x_{j}-X_{j} d y_{i}\right)\right) \\
& +\sum_{i, j=1}^{n}\left(\frac{\partial g_{j}}{\partial x_{i}}\left(X_{i} d y_{j}-Y_{j} d x_{i}\right)+\frac{\partial g_{j}}{\partial y_{i}}\left(Y_{i} d y_{j}-Y_{j} d y_{i}\right)\right)
\end{aligned}
$$

It follows from Proposition 4.7 that $\mathcal{L}_{\eta} \gamma$ vanishes on $T L_{1}$ and $T L_{2}$. The restriction of $\mathcal{L}_{\eta} \gamma$ to $T L_{3}$ is zero since

$$
\begin{aligned}
& \left.\mathcal{L}_{\eta} \gamma\right|_{L_{3}}=\sum_{i, j=1}^{n}\left(\frac{\partial\left(f_{j} Z_{j}\right)}{\partial z_{i}}(z, z) d z_{i}+\frac{\partial\left(g_{j} Z_{j}\right)}{\partial z_{i}}(z, z) d z_{i}\right) \\
& +\sum_{i, j=1}^{n}\left(\frac{\partial f_{j}}{\partial z_{i}}(z, z)\left(Z_{i} d z_{j}-Z_{j} d z_{i}\right)+\frac{\partial g_{j}}{\partial z_{i}}(z, z)\left(Z_{i} d z_{j}-Z_{j} d z_{i}\right)\right) \\
& =\sum_{i, j=1}^{n}\left(\frac{\partial\left(\left(f_{j}+g_{j}\right) Z_{j}\right)}{\partial z_{i}}(z, z) d z_{i}+\frac{\partial\left(f_{j}+g_{j}\right)}{\partial z_{i}}(z, z)\left(Z_{i} d z_{j}-Z_{j} d z_{i}\right)\right)
\end{aligned}
$$

where $Z_{j}(z)=X_{j}(z, z)=Y_{j}(z, z), j=1, \ldots, n$.

Let a be an algebraic restriction represented by a symplectic form vanishing on $T L_{\mathrm{reg}}$. Due to Proposition 4.5, a has a symplectic representative $\sigma=\sigma^{(2)}+\sigma^{(3)}+\sigma^{(4)}$
where

$$
\begin{aligned}
\sigma^{(2)}= & \sum_{\substack{1 \leq i \leq j \leq n}} a_{i j}\left(d x_{i} \wedge d y_{j}-d y_{i} \wedge d x_{j}\right) \\
\sigma^{(3)}= & \sum_{\substack{1 \leq i \leq j \leq n, 1 \leq k \leq n}} b_{i j k}^{(1)}\left(d\left(x_{i} y_{j}\right) \wedge d x_{k}-d\left(y_{i} y_{j}\right) \wedge d x_{k}\right)+ \\
& \sum_{\substack{1 \leq i \leq j \leq n, 1 \leq k \leq n}} b_{i j k}^{(2)}\left(d\left(x_{i} y_{j}\right) \wedge d x_{k}-d\left(x_{i} y_{j}\right) \wedge d y_{k}\right) \\
\sigma^{(4)}= & \sum_{\substack{1 \leq i \leq j \leq k \leq n, 1 \leq l \leq n}} c_{i j k l}\left(d\left(x_{i} x_{j} y_{k}\right) \wedge d x_{l}-d\left(y_{i} y_{j} x_{k}\right) \wedge d y_{l}\right) .
\end{aligned}
$$

where $a_{i j}, b_{i j k}^{(1)}, b_{i j k}^{(2)}, c_{i j k l} \in \mathbb{R}$. Note that $\sigma(0)$ is represented by the matrix

$$
M=\left[\begin{array}{cc}
0 & C \\
-C & 0
\end{array}\right]
$$

where $C=\left(c_{i j}\right) \in \operatorname{GL}(n, \mathbb{R})$ is defined by $\left\{\begin{array}{l}c_{i j}=a_{i j}, i<j \\ c_{i j}=a_{j i}, i>j \\ c_{i i}=2 a_{i i}, i=1, \ldots, n\end{array}\right.$.
Proposition 4.11. The algebraic restriction $[\sigma]_{L}$ is diffeomorphic to $\left[\sigma^{(2)}\right]_{L}$.
The proof of Proposition 4.11 follows from the next lemma.
Lemma 4.12. (i) The algebraic restriction $[\sigma]_{L}$ is diffeomorphic to $\left[\sigma^{(2)}+\theta\right]_{L}$, where θ is a homogeneous 2-form of degree 4 vanishing on $T L_{\mathrm{reg}}$.
(ii) The algebraic restriction $\left[\sigma^{(2)}+\theta\right]_{L}$ is diffeomorphic to $\left[\sigma^{(2)}\right]_{L}$.

Proof. We prove only the item (i) since the proof of (ii) is very similar. We use the Moser homotopy method. Let

$$
\sigma_{t}^{(4)}=\sum_{\substack{1 \leq i \leq j \leq k \leq n, 1 \leq l \leq n}} f_{i j k l}(t)\left(d\left(x_{i} x_{j} y_{k}\right) \wedge d x_{l}-d\left(y_{i} y_{j} x_{k}\right) \wedge d y_{l}\right)
$$

where $f_{i j k l}:[0,1] \rightarrow \mathbb{R}$ are germs of functions with $f_{i j k l}(0)=c_{i j k l}, 1 \leq i \leq j \leq k \leq n$ and $1 \leq l \leq n$. Let $\sigma_{t}=\sigma^{(2)}+(1-t) \sigma^{(3)}+\sigma_{t}^{(4)}$. Suppose that there exists $\Phi_{t}:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right), t \in[0,1]$, a family of local symmetries of L such that

$$
\begin{equation*}
\Phi_{t}^{*}\left[\sigma_{t}\right]_{L}=[\sigma]_{L} \text { and } \Phi_{0}=I d \tag{4.0.1}
\end{equation*}
$$

Transversal Lagrangian stars

Differentiating (4.0.1) on t we obtain

$$
\left[\mathcal{L}_{\eta_{t}} \sigma_{t}\right]_{L}=\left[\sigma^{(3)}-\frac{d \sigma_{t}^{(4)}}{d t}\right]_{L}
$$

where η_{t} is obtained from the equation $d \Phi_{t} / d t=\eta_{t} \circ \Phi_{t}$.
According to Propositions 3.8 and 4.10 , if $\eta_{t} \in \operatorname{Lift}(F)$ is homogeneous of degree 1 then

$$
\mathcal{L}_{\eta_{t}} \sigma^{(2)}=\sigma^{(3)}
$$

We look for a germ of vector field η_{t} satisfying

$$
i_{\eta_{t}} \sigma^{(2)}=\sum_{\substack{1 \leq i \leq j \leq n, 1 \leq k \leq n}}\left(b_{i j k}^{(1)}\left(x_{i} y_{j} d x_{k}-y_{i} y_{j} d x_{k}\right)+b_{i j k}^{(2)}\left(x_{i} y_{j} d x_{k}-x_{i} y_{j} d y_{k}\right)\right)
$$

If $\eta_{t}=\sum_{i=1}^{n}\left(X_{i}(t, x, y) \frac{\partial}{\partial x_{i}}+Y_{i}(t, x, y) \frac{\partial}{\partial y_{i}}\right)$ then

$$
i_{\eta_{t}} \sigma^{(2)}=\sum_{i, j=1}^{n} e_{i j}\left(X_{i} d y_{j}-Y_{i} d x_{j}\right)
$$

where $\left\{\begin{array}{l}e_{i j}=a_{i j}, i<j \\ e_{i j}=a_{j i}, i>j \\ e_{i i}=2 a_{i i}, i=1, \ldots, n\end{array} \quad\right.$ and $E=\left(e_{i j}\right) \in \operatorname{GL}(n, \mathbb{R})$. Therefore $\sum_{i, j=1}^{n} e_{i j}\left(X_{i} d y_{j}-Y_{i} d x_{j}\right)=\sum_{\substack{1 \leq i \leq j \leq n, 1 \leq k \leq n}}\left(b_{i j k}^{(1)}\left(x_{i} y_{j} d x_{k}-y_{i} y_{j} d x_{k}\right)+b_{i j k}^{(2)}\left(x_{i} y_{j} d x_{k}-x_{i} y_{j} d y_{k}\right)\right)$.

We have the following system

$$
\left(\begin{array}{cc}
E & 0 \\
0 & E
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{n} \\
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right)=\sum_{1 \leq i \leq j \leq n}\left(\begin{array}{c}
-b_{i j 1}^{(2)} x_{i} y_{j} \\
\vdots \\
-b_{i j n}^{(2)} x_{i} y_{j} \\
-b_{i j 1}^{(1)}\left(x_{i} y_{j}-y_{i} y_{j}\right)-b_{i j 1}^{(2)} x_{i} y_{j} \\
\vdots \\
-b_{i j n}^{(1)}\left(x_{i} y_{j}-y_{i} y_{j}\right)-b_{i j n}^{(2)} x_{i} y_{j}
\end{array}\right)
$$

F. Assunção de Brito Lira, W. Domitrz and R. Wik Atique

Let $W=\left(w_{i j}\right) \in \mathrm{GL}(n, \mathbb{R})$ be the inverse matrix of E. The solution of the system is given by

$$
\begin{array}{ll}
X_{1}=-\sum_{1 \leq i \leq j \leq n} & \left(w_{11}\left(b_{i j 1}^{(2)} x_{i} x_{j}\right)+\cdots+w_{1 n}\left(b_{i j n}^{(2)} x_{i} x_{j}\right)\right) \\
\vdots \\
X_{n}=-\sum_{1 \leq i \leq j \leq n} & \left(w_{n 1}\left(b_{i j 1}^{(2)} x_{i} x_{j}\right)+\cdots+w_{n n}\left(b_{i j n}^{(2)} x_{i} x_{j}\right)\right) \\
Y_{1}=-\sum_{1 \leq i \leq j \leq n} & \left(w_{11}\left(b_{i j 1}^{(1)}\left(x_{i} y_{j}-y_{i} y_{j}\right)+b_{i j 1}^{(2)} x_{i} y_{j}\right)+\cdots+\right. \\
& \left.w_{1 n}\left(b_{i j n}^{(1)}\left(x_{i} y_{j}-y_{i} y_{j}\right)+b_{i j n}^{(2)} x_{i} y_{j}\right)\right) \\
\vdots & \\
Y_{n}=-\sum_{1 \leq i \leq j \leq n} & \left(w_{n 1}\left(b_{i j 1}^{(1)}\left(x_{i} y_{j}-y_{i} y_{j}\right)+b_{i j 1}^{(2)} x_{i} y_{j}\right)+\cdots+\right. \\
\left.w_{n n}\left(b_{i j n}^{(1)}\left(x_{i} y_{j}-y_{i} y_{j}\right)+b_{i j n}^{(2)} x_{i} y_{j}\right)\right) .
\end{array}
$$

By Proposition 4.7 the germ of vector field $\eta_{t}=\sum_{i=1}^{n}\left(X_{i} \frac{\partial}{\partial x_{i}}+Y_{i} \frac{\partial}{\partial y_{i}}\right)$ is liftable over F.

According to Proposition 3.8 and 4.10 we have that $\mathcal{L}_{\eta_{t}} \sigma_{t}^{(4)}$ is a closed 2-form homogeneous of degree 5 vanishing on $T L_{\mathrm{reg}}$. It follows from Proposition 4.5 that $\mathcal{L}_{\eta_{t}} \sigma_{t}^{(4)}$ has zero algebraic restriction to L.

We determine the germs of functions $f_{i j k l}$ by the ODEs

$$
i_{\eta_{t}}(1-t) \sigma^{(3)}=-\sum_{\substack{1 \leq i \leq j \leq k \leq n, 1 \leq l \leq n}} \frac{d f_{i j k l}(t)}{d t}\left(x_{i} x_{j} y_{k} d x_{l}-x_{i} x_{j} y_{k} d y_{l}\right)
$$

with the initial data $f_{i j k}(0)=c_{i j k l}$.
We prove that

$$
\mathcal{L}_{\eta_{t}}\left(\sigma^{(2)}+(1-t) \sigma_{(3)}\right)=\sigma^{(3)}-\frac{d}{d t} \sigma_{t}^{(4)}
$$

Thus the family of diffeomorphisms Φ_{t} associated to η_{t} preserves L since η_{t} is liftable over F and $\Phi_{t}^{*}\left[\sigma_{t}\right]_{L}=[\sigma]_{L}, t \in[0,1]$. Therefore $[\sigma]_{L}$ is diffeomorphic to $\left[\sigma^{(2)}+\theta\right]_{L}$, where

$$
\theta=\sum_{\substack{1 \leq i \leq j \leq k \leq n, 1 \leq l \leq n}} \tilde{c}_{i j k l}\left(d\left(x_{i} x_{j} y_{k}\right) \wedge d x_{l}-d\left(x_{i} x_{j} y_{k}\right) \wedge d y_{l}\right)
$$

where $\tilde{c}_{i j k l}=f_{i j k l}(1)$

Transversal Lagrangian stars

Proposition 4.13. Let $\Phi:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right)$ be a local symmetry of L. Then the germ of diffeomorphism $\Phi^{(1)}$ is a local symmetry of L.

Proof. Let j_{i} be a permutation of $\{1,2,3\}$ such that $\Phi\left(L_{i}\right)=L_{j_{i}}$, for $i=1,2,3$. Let $p \in L_{i}$, for some $i \in\{1,2,3\}$. We can write Φ in its Taylor series as

$$
\Phi=\Phi^{(1)}+\tilde{\Phi}
$$

where $\tilde{\Phi}^{(1)}=0$. As L_{i} is a germ of a linear subspace of $\mathbb{R}^{2 n}$ then $\Phi(t p) / t$ belongs to the linear subspace $\ell_{j_{i}}$ which contains the germ $L_{j_{i}}$, for all $t \in(0,1]$. Then

$$
\lim _{t \rightarrow 0} \frac{\Phi(t p)}{t}=\Phi^{(1)}(p) \in \ell_{j_{i}} .
$$

Taking p close to the origin we have $\Phi^{(1)}(p) \in L_{j_{i}}$.
As a consequence of Propositions 4.11 and 4.13 , the classification of the algebraic restrictions to L of symplectic forms vanishing on $T L_{\mathrm{reg}}$ under the action of local symmetries of L reduces to the classification of algebraic restrictions to L of symplectic forms homogeneous of degree 2 vanishing on $T L_{\mathrm{reg}}$ under the action of linear local symmetries of L. Since every 2 -form does not have zero algebraic restriction to L we have the following result:

Proposition 4.14. Let σ_{1}, σ_{2} be two symplectic forms vanishing on $T L_{\mathrm{reg}}$. Then $\left[\sigma_{1}\right]_{L}$ is diffeomorphic to $\left[\sigma_{2}\right]_{L}$ if and only if there exists a linear local symmetry of L $\Psi:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right)$ such that $\Psi^{*} \sigma_{2}^{(2)}=\sigma_{1}^{(2)}$.

5. Symplectic classification of transversal Lagrangian stars

One can get the following result by direct calculation.
Proposition 5.1. Let $\Phi:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right)$ be a linear local symmetry of L. Then Φ is represented by one of the following matrices:

1. $\left[\begin{array}{cc}B & 0 \\ 0 & B\end{array}\right]$
2. $\left[\begin{array}{cc}0 & B \\ B & 0\end{array}\right]$
3. $\left[\begin{array}{cc}B & 0 \\ B & -B\end{array}\right]$
4. $\left[\begin{array}{cc}B & -B \\ 0 & -B\end{array}\right]$
5. $\left[\begin{array}{cc}0 & B \\ -B & B\end{array}\right]$
6. $\left[\begin{array}{cc}B & -B \\ B & 0\end{array}\right]$
where $B \in \operatorname{GL}(n, \mathbb{R})$.

F. Assunģão de Brito Lira, W. Domitrz and R. Wik Atique

Let σ be a symplectic form homogeneous of degree 2 vanishing on $T L_{\mathrm{reg}}$. According to Proposition 4.5, σ is written as $\sigma=\sum_{i, j=1}^{n} a_{i j} d x_{i} \wedge d y_{j}$, where $a_{i j}=a_{j i}$, $i, j=1, \ldots, n$. For all $p \in\left(\mathbb{R}^{2 n}, 0\right)$, the bilinear form $\sigma(p): \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ has the representing matrix

$$
W=\left[\begin{array}{cc}
0 & A \\
-A & 0
\end{array}\right]
$$

where $A=\left(a_{i j}\right)$.
Let $\Phi:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right)$ be a linear local symmetry of L represented by the matrix of the type 1 of Proposition 5.1. The pullback of σ by Φ is given by

$$
\text { (1) }\left[\begin{array}{cc}
0 & B^{T} A B \\
-B^{T} A B & 0
\end{array}\right] \text {. }
$$

For the other cases described in Proposition 5.1, the pullback has one of the followings representations
(2) $\left[\begin{array}{cc}0 & -B^{T} A B \\ B^{T} A B & 0\end{array}\right]$
(3) $\left[\begin{array}{cc}0 & -B^{T} A B \\ B^{T} A B & 0\end{array}\right]$
(4) $\left[\begin{array}{cc}0 & -B^{T} A B \\ B^{T} A B & 0\end{array}\right]$
(5) $\left[\begin{array}{cc}0 & B^{T} A B \\ -B^{T} A B & 0\end{array}\right]$

Definition 5.2. Two matrices $A, B \in M(n, \mathbb{R})$ are congruent if there exists a matrix $P \in \mathrm{GL}(n, \mathbb{R})$ such that

$$
A=P^{T} B P
$$

The problem of classification of algebraic restrictions to L of symplectic forms homogeneous of degree 2 vanishing on $T L_{\text {reg }}$ under the action of linear local symmetries of L is equivalent to the problem of classification of invertible symmetric matrices under the action of congruence. For such classification we use the Sylvester's Law of Inertia (see $[\mathrm{R}]$).

For each $s \in\{0, \ldots, n\}$, define $a_{s}=\left[\omega_{s}\right]_{L}$ where

$$
\omega_{s}=d x_{1} \wedge d y_{1}+\cdots+d x_{s} \wedge d y_{s}-d x_{s+1} \wedge d y_{s+1}-\cdots-d x_{n} \wedge d y_{n}
$$

Proposition 5.3. Let σ be a symplectic form on $\left(\mathbb{R}^{2 n}, 0\right)$ vanishing on $T L_{\mathrm{reg}}$. Then $[\sigma]_{L}$ is diffeomorphic to one and only one algebraic restriction of the type a_{s}, for some $s \in\{0, \ldots, n\}$ with $s \leq \frac{n}{2}$.

Transversal Lagrangian stars

Proof. According to Proposition 4.14, it is sufficient to verify that for a symplectic form σ homogeneous of degree 2 vanishing on $T L_{\text {reg }}$ there exists a linear local symmetry of $L \Psi:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right)$ such that $\Psi^{*} \sigma=\omega_{s}$, for a unique $s \in\{0, \ldots, n\}$ such that $s \leq \frac{n}{2}$. According to Proposition 4.5 , for all $p \in\left(\mathbb{R}^{2 n}, 0\right)$ the bilinear form $\sigma(p): \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ is represented by the matrix

$$
W=\left[\begin{array}{cc}
0 & A \\
-A & 0
\end{array}\right]
$$

where $A \in \mathrm{GL}(n, \mathbb{R})$ is symmetric.
Due to Sylvester's Law of Inertia, there exists $B \in \mathrm{GL}(n, \mathbb{R})$ such that $B^{T} A B$ is equal to one and only one of the matrices Z_{u} for some $u \in\{0, \ldots, n\}$ where

$$
Z_{u}=\left[\begin{array}{cc}
I d_{u} & 0 \\
0 & -I d_{n-u}
\end{array}\right]
$$

If $u \leq \frac{n}{2}$ consider Φ the linear local symmetry of L represented by

$$
\left[\begin{array}{cc}
B & 0 \\
0 & B
\end{array}\right] .
$$

The bilinear form $\Phi^{*} \sigma(p)$ is represented by

$$
\left[\begin{array}{cc}
0 & Z_{u} \\
-Z_{u} & 0
\end{array}\right]
$$

Then $\Phi^{*} \sigma=\sum_{i=1}^{u} d x_{i} \wedge d y_{i}-\sum_{i=u+1}^{n} d x_{i} \wedge d y_{i}=\omega_{u}$
If $u>\frac{n}{2}$ consider Ψ the linear local symmetry of L represented by

$$
\left[\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right]
$$

Thus $\Psi^{*} \sigma(p)$ is represented by

$$
\left[\begin{array}{cc}
0 & -Z_{u} \\
Z_{u} & 0
\end{array}\right]
$$

Due to Sylvester's Law of Inertia, there exists $C \in \operatorname{GL}(n, \mathbb{R})$ such that $C^{T}\left(-Z_{u}\right) C=$ Z_{n-u}. Let H be a linear local symmetry of L represented by

$$
\left[\begin{array}{cc}
C & 0 \\
0 & C
\end{array}\right] .
$$

F. Assunģão de Brito Lira, W. Domitrz and R. Wik Atique

We have

$$
H^{*} \Psi^{*} \sigma=\sum_{i=1}^{n-u} d x_{i} \wedge d y_{i}-\sum_{i=n-u+1}^{n} d x_{i} \wedge d y_{i}=\omega_{n-u}
$$

Then the orbits of algebraic restrictions to L of symplectic forms have symplectic representatives ω_{s}, for $s \leq \frac{n}{2}$.

It remains only to prove that the orbits of a_{1}, \ldots, a_{l} are disjoints, where l is the biggest integer such that $l \leq \frac{n}{2}$. Let $u, v \in\{0, \ldots, n\}, u, v \leq \frac{n}{2}$ and $u \neq v$. The forms $\omega_{u}(p)$ and $\omega_{v}(p)$ are represented by:

$$
\omega_{u}(p)=\left[\begin{array}{cc}
0 & Z_{u} \\
-Z_{u} & 0
\end{array}\right] \text { and } \omega_{v}(p)=\left[\begin{array}{cc}
0 & Z_{v} \\
-Z_{v} & 0
\end{array}\right] .
$$

Note that the signatures of Z_{v} and $-Z_{v}$ are distinct of the signature of Z_{u}. According to Sylvester's Law of Inertia, the matrix Z_{u} is not congruent neither to Z_{v} nor to $-Z_{v}$. It follows from Proposition 5.1 that there is no linear local symmetry of L $T:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right)$ such that $T^{*} a_{u}=a_{v}$. Therefore the orbits represented by a_{u} and a_{v} are disjoints.

Now we have the elements to obtain the symplectic classification of transversal Lagrangian stars in $\left(\left(\mathbb{R}^{2 n}, \omega\right), 0\right)$.

Proof of Theorem 2.3. Due to Proposition 5.3, the orbits of the algebraic restrictions to L of symplectic forms vanishing on $T L_{\mathrm{reg}}$ are $a_{1}=\left[\omega_{1}\right]_{L}, \ldots, a_{u}=\left[\omega_{u}\right]_{L}$, where u is the biggest integer that satisfies $u \leq \frac{n}{2}$. Let s be a positive integer such that $s \leq u$. Consider the germ of diffeomorphism $\Phi_{s}:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{2 n}, 0\right)$ defined by $\Phi_{s}(x, y)=\left(x, y_{1}, \ldots, y_{s},-y_{s+1}, \ldots,-y_{n}\right)$. Note that $\Phi_{s}^{*} \omega_{s}=\omega$. Then the algebraic restrictions a_{1}, \ldots, a_{u} are diffeomorphic respectively to

$$
[\omega]_{\Phi_{1}^{-1}(L)}, \ldots,[\omega]_{\Phi_{u}^{-1}(L)}
$$

Let $E^{s}=\left(\left\{\Phi_{s}^{-1}\left(L_{1}\right), \Phi_{s}^{-1}\left(L_{2}\right), \Phi_{s}^{-1}\left(L_{3}\right)\right\}, 0\right)$.
Finally we apply Theorem 3.3 to obtain the normal forms of transversal Lagrangian stars E^{1}, \ldots, E^{u}.

References

[ADW] Assunção de Brito Lira F.; Domitrz W.; Wik Atique R. Symplectic singularity of curves with the semigroup $(4,5,6,7)$, preprint.

Transversal Lagrangian stars

[AG] Arnold, V. I.; Givental, A. B., Symplectic Geometry. Dynamical systems, IV, 1-138, Encyclopedia of Mathematical Sciences, vol. 4, Springer, Berlin, 2001.
[D1] Domitrz, W., Local symplectic algebra of quasi-homogeneous curves. Fund. Math. 204 (2009) no. 1, 57-86.
[D2] Domitrz, W., Zero-dimensional symplectic isolated complete intersection singularities. J. Singul. 6 (2012), 19-26.
[DJZ1] Domitrz, W.; Janeczko, S.; Zhitomirskii, M., Relative Poincaré lemma, contractibility, quasi-homogeneity and vector fields tangent to a singular variety. Illinois J. Math. 48 (2004), no. 3, 803-835.
[DJZ2] Domitrz, W.; Janeczko S.; Zhitomirskii, M., Symplectic singularities of varieties: the method of algebraic restrictions. J. Reine Angew. Math. 618 (2008), 197-235.
[DJZ3] Domitrz, W.; Janeczko S.; Zhitomirskii, M., Generic singularities of symplectic and quasi-symplectic immersions. Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 2, 317-329.
[DT1] Domitrz, W.; Trȩbska, Ż., Symplectic S_{μ} singularities. Real and Complex singularities, Contemp. Math. Soc., 569, Amer. Math. Soc., Providence, RI, (2012), 45-65.
[DT2] Domitrz, W.; Trȩbska, Ż., Symplectic T_{7}, T_{8} singularities and Lagrangian tangency orders. Proc. Edinb. Math. Soc. (2) 55 (2012), no. 3, 657-683.
[J] Janeczko, S., Classification of Lagrangian stars and their symplectic reductions. J. Phys. A: Math. Gen. 31 (1998), 3677-3685.
[LV] Lion, G.; Vergne, M., The Weil representation, Maslov index and Theta series. Progress in Mathematics 6, Birkhuser, Boston, Mass., 1980.
[R] Roman, S., Advanced Linear Algebra. Third edition. Graduate Texts in Mathematics, 135. Springer, New York, (2008).
[T1] Trȩbska, Ż., Symplectic W_{8} and W_{9} singularities. J. Singul. 6 (2012), 158-178.
[T2] Trȩbska, Ż., Symplectic U_{7}, U_{8} and U_{9} singularities. Demonstr. Math. 48 (2015), no. 2, 322-347.

[^0]: Email addresses: fausto.lira@ufrb.edu.br (F. Assunção de Brito Lira), domitrz@mini.pw.edu.pl (W. Domitrz), rwik@icmc.usp.br (R. Wik Atique)
 ${ }^{1}$ F. Assunção de Brito Lira was supported by CAPES, CNPq grant no. 245309/2012-8 and Fapesp grant no. 2012/16426-4.
 ${ }^{2}$ W. Domitrz was supported by NCN grant no. DEC-2013/11/B/ST1/03080.
 ${ }^{3}$ R. Wik Atique was partially supported Fapesp grant no. 2015/04409-6.

