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Abstract

A Lagrangian star is a system of three Lagrangian submanifolds of the symplectic
space intersecting at a common point. In this work we classify transversal Lagrangian
stars in the symplectic space in the analytic category under the action of symplec-
tomorphisms by using the method of algebraic restrictions. We present a list of all
transversal Lagrangian star.
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1. Introduction

The problem of classification of germs of s Lagrangian submanifolds L1, · · · , Ls
intersecting at a common point p (defined in [J] as s-Lagrangian star at p) under
the action of symplectomorphisms was introduced by Janeczko in [J]. In the case of
three Lagrangian subspaces in a symplectic vector space (M,ω) under the action of
symplectic transformations, the natural invariant is the Maslov index ([LV]), that is,
the signature of the Kashiwara quadratic form Q(x1, x2, x3) = ω(x1, x2)+ω(x2, x3)+

Email addresses: fausto.lira@ufrb.edu.br (F. Assunção de Brito Lira),
domitrz@mini.pw.edu.pl (W. Domitrz), rwik@icmc.usp.br (R. Wik Atique )

1F. Assunção de Brito Lira was supported by CAPES, CNPq grant no. 245309/2012-8 and
Fapesp grant no. 2012/16426-4.

2W. Domitrz was supported by NCN grant no. DEC-2013/11/B/ST1/03080.
3R. Wik Atique was partially supported Fapesp grant no. 2015/04409-6.

Preprint submitted to Proceedings of the 14th workshop of Singularities June 15, 2017



Transversal Lagrangian stars

ω(x3, x1) defined on the direct sum of the Lagrangian subspaces. Janeczko generalizes
the Maslov index to the nonlinear case.

The aim of this paper is to obtain the symplectic classification of 3-Lagrangian
stars two by two transversal in a symplectic space. For this purpose we use the
method of algebraic restrictions introduced in [DJZ2]. We obtain a list of all transver-
sal Lagrangian star.

A generalization of the Darboux-Givental Theorem ([AG]) to germs of quasi-
homogeneous subsets of the symplectic space was obtained in [DJZ2] and reduces
the problem of symplectic classification of germs of quasi-homogeneous subsets to the
problem of classification of algebraic restrictions of symplectic forms to these subsets.
By this method, complete symplectic classifications of the A − D − E singularities
of planar curves and the S5 singularity were obtained in [DJZ2].

The method of algebraic restrictions was used to study the local symplectic alge-
bra of 1-dimensional singular analytic varieties. It is proved in [D1] that the vector
space of algebraic restrictions of closed 2-forms to a germ of 1-dimensional singular
analytic variety is a finite-dimensional vector space.

The method of algebraic restrictions was also applied to the zero-dimensional
symplectic isolated complete intersection singularities (see [D2]) and to other 1-
dimensional isolated complete intersection singularities: the Sµ symplectic singu-
larities for µ > 5 in [DT1], the T7−T8 symplectic singularities in [DT2], the W8−W9

symplectic singularities in [T1] and the U7, U8 and U9 symplectic singularities in
[T2]. In [DJZ3] the method is used to construct a complete system of invariants in
the problem of classifying singularities of immersed k-dimensional submanifolds of
a symplectic 2n-manifold at a generic double point. In [ADW], the authors studied
the local symplectic algebra of curves with semigroup (4, 5, 6, 7) by this method.

This paper is organized as follows. Section 2 contains basic definitions about
Lagrangian stars and the formulation of the main result. We also explain why we
use the method of algebraic restrictions for this problem. We recall the method of
algebraic restrictions in Section 3. In Section 4 we reduce the problem of classification
of algebraic restrictions of symplectic forms to the linear case. Finally in Section 5
we obtain the symplectic classification of 3-Lagrangian stars two by two transversal.

2. Lagrangian stars

Consider (R2n, ω =
∑n

i=1 dxi ∧ dyi) the 2n-dimensional symplectic space with
coordinate system (x1, . . . , xn, y1, . . . , yn).

Let {L1, ..., Ls} be a system of Lagrangian submanifolds of (R2n, ω) intersecting
at the origin.
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Definition 2.1 ([J]). The germ of Lagrangian submanifolds ({L1, . . . , Ls}, 0) is called
s-Lagrangian star. If s = 2 and L1 is transversal to L2 then the 2-Lagrangian
star ({L1, L2}, 0) is called the basic Lagrangian star. The 3-Lagrangian star is simply
called a Lagrangian star. We denote L = L1 ∪ · · · ∪ Ls.

Definition 2.2. The germ of a subset N ⊂ (Rm, 0) is called quasi-homogeneous
if there exist a local coordinate system x1, . . . , xm of (Rm, 0) and positive integers
λ1, . . . , λm with the following property: if (a1, . . . , am) ∈ N then (tλ1a1, . . . , t

λmam) ∈
N , for all t ∈ [0, 1]. The integers λ1, . . . , λm are called weights of the variables
x1, . . . , xm, respectively.

Let E = ({L1, . . . , Ls}, 0) be an s-Lagrangian star. We call E a quasi-homogeneous
s-Lagrangian star if L = L1∪· · ·∪Ls is a germ of a quasi-homogeneous subset. More-
over, E is called transversal if L1, . . . , Ls are two by two transversal intersecting only
at the origin.

Given E = ({L1, . . . , Ls}, 0) and E ′ = ({L′1, . . . , L′s}, 0) two s-Lagrangian stars
we say that they are diffeomorphic if there exists a germ of diffeomorphism
Φ : (R2n, 0)→ (R2n, 0) such that Φ(Li) = L

′
ji

for some permutation ji of {1, . . . , s}.
When Φ is a germ of a symplectomorphism of ((R2n, ω), 0) we say that E and E ′ are
symplectically equivalent (or equivalent).

The germ of a Langrangian submanifold of (R2n,
∑n

i=1 dxi∧dxi) is symplectically
equivalent to L1 = {(x, y) ∈ R2n|x1 = · · · = xn = 0}. The germ L2 at 0 of a
Langrangian submanifold of (R2n,

∑n
i=1 dxi∧dxi) which is transversal to L1 at 0 can

be desribed in the following way

yi =
∂S

∂xi
(x1, · · · , xn) for r = i, · · · , n,

where S is a smooth function-germ on Rn. Thus the transversal Lagrangian 2-star
is symplectically equivalent to the basic Lagrangian star ({L1, L2}, 0) defined by
L1 = {(x, y) ∈ R2n|x1 = · · · = xn = 0} and L2 = {(x, y) ∈ R2n|y1 = · · · = yn = 0},
by a symplectomorphism of the following form

Φ : R2n 3 (x, y) 7→ (x1, · · · , xn, y1 −
∂S

∂x1

(x1, · · · , xn), · · · , yn −
∂S

∂xn
(x1, · · · , xn)).

It implies that a trasversal Lagrangian 3-star is symplectically equivalent to a La-
grangian 3-star ({L1, L2, L3}, 0), where L1 = {(x, y) ∈ R2n|x1 = · · · = xn = 0},
L2 = {(x, y) ∈ R2n|y1 = · · · = yn = 0} and L3 can be desribed in the following way

yi =
∂S

∂xi
(x1, · · · , xn) for r = i, · · · , n,
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where S is a smooth function-germ on Rn. Using the classical method for the
classification of transversal Lagrangian 3-star ({L1, L2, L3}, 0) we should apply the
symplectomorphisms which preserve the set L1 ∪ L2 to obtain the normal form of
L3. It is easy to see that such symplectomorphisms have following forms Φ(x, y) =
(Φ1(x, y),Φ2(x, y)) or Ψ(x, y) = (Ψ1(x, y),Ψ2(x, y)), where Φi,Ψi : R2n → Rn for
i = 1, 2 such that Φ1(0, y) = Φ2(x, 0) = Ψ1(x, 0) = Ψ2(0, y) = 0. A Hamilto-
nian vector field XH =

∑n
i=1

∂H
∂yi

∂
∂xi
− ∂H

∂xi

∂
∂yi

is tangent to L1 ∪ L2 if the Hamilto-

nian function-germ H satisfies the following system of equations yj
∂H
∂yi
− xi

∂H
∂xj

=∑n
k=1

∑n
l=1 xkylgi,j,k,l(x, y) for i, j = 1, · · · , n., where gi,j,k,l are function-germs on

R2n. Hamiltonian function-germs of the form H(x, y) =
∑n

i=1

∑n
j=1 xiyjfi,j(x, y),

where fi,j are function-germs on R2n, satisfy the above system of equations. So the
classical method is complicated for trasversal Lagrangian 3-stars. Therefore we ap-
ply the method of algebraic restriction to obtain the following classification theorem,
which is the main result of this paper.

Theorem 2.3. A transversal Lagrangian 3-star in (R2n,
∑n

i=1 dxi ∧ dyi) is symplec-
tically equivalent to one and only one of Es = ({L1, L2, L

s
3}, 0), where

L1 = {x1 = · · · = xn = 0}, L2 = {y1 = · · · = yn = 0},

Ls3 = {x1 − y1 = · · · = xs − ys = xs+1 + ys+1 = · · · = xn + yn = 0},
and s is a non-negative integer such that s ≤ n

2
.

Notations: Let θ be a k-form on ((R2n, ω), 0) and let E = ({L1, . . . , Ls}, 0) be
a s-Lagrangian star.

1. The set of smooth points of L is denoted by Lreg.
2. The restriction of θ to the set {(p, v1, . . . , vk)|p ∈ Lj and v1, . . . , vk ∈ TpLj} is

denoted by θ|TLj
, j = 1, . . . , s.

3. Suppose θ(p)(u1, . . . , uk) = 0 for every p ∈ Lreg and u1, . . . , uk ∈ TpLreg. In
this case, we say that θ vanish on TLreg.

All objects in this paper (functions, vector fields, k-forms, maps) are R-analytic.

3. Method of algebraic restrictions

In this section we present the method of algebraic restrictions. More details can
be found in [DJZ2].

Let M be a germ of smooth manifold. We denote by Λk(M) the space of all
germs at 0 of differential k-forms on M . Given a subset N ⊂ M one introduces the
following subspaces of Λk(M):
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Λk
N(M) = {ω ∈ Λk(M) : ω(x) = 0, for all x ∈ N},

A k
0 (N,M) = {α + dβ : α ∈ Λk

N(M), β ∈ Λk−1
N (M)}.

The notation ω(x) = 0 means that the k-linear form ω(x) vanishes for all k-tuple
of vectors in TxM , i. e. all coefficients of ω in some (and then any) local coordinate
system vanish at the point x.

Definition 3.1 ([DJZ2]). Let N be a subset of M and let θ ∈ Λk(M). The algebraic
restriction of θ to N is the equivalence class of θ in Λk(M), where the equivalence
is as follows: θ is equivalent to θ̃ if θ − θ̃ ∈ A k

0 (N,M). The algebraic restriction of
θ to N is denoted by [θ]N .

Notation: Let θ be a k-form on M . Writing [θ]N = 0 (or saying that θ has zero
algebraic restriction to N) we mean that [θ]N = [0]N , i.e. θ ∈ A k

0 (N,M).

Remark 3.2. It is clear that if θ ∈ A k
0 (N,M) then dθ ∈ A k+1

0 (N,M). Moreover,
if θ1 is a k-form such that [θ1]N = 0 then [θ1 ∧ θ2]N = 0 for every q-form θ2. Then
if θ1 is a k-form and if θ2 is a q-form the algebraic restrictions d[θ1]N := [dθ1]N and
[θ1]N ∧ [θ2]N := [θ1 ∧ θ2]N are well defined.

Let M and M̃ be manifolds and Φ : M̃ →M a local diffeomorphism. Let N be a
subset of M . It is clear that Φ∗A k

0 (N,M) = A k
0 (Φ−1(N), M̃). Therefore the action

of the group of diffeomorphisms can be defined as follows: Φ∗([θ]N) := [Φ∗θ]Φ−1(N),

where θ is an arbitrary k-form on M . Let Ñ ⊂ M̃ . Two algebraic restrictions [θ]N
and [θ̃]Ñ are called diffeomorphic if there exists a local diffeomorphism form M̃
to M sending one algebraic restriction to another. This of course requires that the
diffeomorphism sends Ñ to N . If M = M̃ and N = Ñ , Φ is called a local symmetry
of N .

The method of algebraic restrictions is based on the following result:

Theorem 3.3. (i) (Theorem A in [DJZ2]) Let N be a quasi-homogeneous subset of
R2n. Let ω0, ω1 be symplectic forms on R2n with the same algebraic restriction
to N . There exists a local diffeomorphism Φ such that Φ(x) = x for any x ∈ N
and Φ∗ω1 = ω0.

(ii) (Corollary of (i)) Let Ẽ = ({L̃1, . . . , L̃s}, 0) and Ê = ({L̂1, . . . , L̂s}, 0) be s-
Lagrangian stars diffeomorphic to a quasi-homogeneous s-Lagrangian star E =
({L1, . . . , Ls}, 0). Then Ẽ and Ê are equivalents if and only if [ω]L̂ and [ω]L̃
are diffeomorphic.

Remark 3.4. (i) Let E = ({L1, L2, L3}, 0) be a transversal quasi-homogeneous
Lagrangian star. Due to Theorem 3.3, the symplectic classification of transver-
sal Lagrangian stars diffeomorphic to E reduces to the classification of algebraic
restrictions of symplectic forms to L vanishing on TLreg.
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(ii) Let Ẽ = ({L̃1, L̃2, L̃3}, 0) be a transversal Lagrangian star in ((R2n, ω), 0). It
is not difficult to prove that there exists a smooth coordinate change in (R2n, 0)
such that, for all i, L̃i = Li, where L1 = {y1 = · · · = yn = 0}, L2 = {x1 =
· · · = xn = 0} and L3 = {x1 − y1 = · · · = xn − yn = 0}.

Definition 3.5. The germ of a function, of a differential k-form, or of a vector
field α on (Rm, 0) is quasi-homogeneous in a coordinate system (x1, . . . , xm) on
(Rm, 0) with positive weights (λ1, . . . , λm) if LEα = δα, where E =

∑m
i=1 λixi∂/∂xi

is the germ of the Euler vector field on (Rm, 0) and δ is a real number called the
quasi-degree.

It is easy to show that α is quasi-homogeneous in a coordinate system (x1, . . . , xm)
with weights (λ1, . . . , λm) if and only if F ∗t α = tδα, where Ft(x1, . . . , xm) =
(tλ1x1, . . . , t

λmxm). Thus germs of quasi-homogeneous functions of quasi-degree δ
are germs of weighted homogeneous polynomials of degree δ. The coefficient fi1,...,ik
of the quasi-homogeneous differential k-form

∑
fi1···ikdxi1 ∧· · ·∧dxik of quasi-degree

δ is a weighted homogeneous polynomial of degree δ −
∑k

j=1 λij . The coefficient fi
of the quasi-homogeneous vector field

∑m
i=1 fi∂/∂xi of quasi-degree δ is a weighted

homogeneous polynomial of degree δ + λi.

Let θ be the germ of a k-form on (Rm, 0). We denote by θ(r) the quasi-homogeneous
part of quasi-degree r in the Taylor series of θ. It is clear that if a smooth function
h vanishes on a quasi-homogeneous set N then h(r) also vanishes on N , for every
non-negative r. This simple observation implies the following result:

Proposition 3.6. If θ is a k-form on (Rm, 0) with [θ]N = 0 then [θ(r)]N = 0, for
any r.

Proposition 3.6 allows us to define the quasi-homogeneous part of an algebraic
restriction.

Definition 3.7. Let a = [θ]N be an algebraic restriction of a k-form θ to a germ
of quasi-homogeneous subset N ⊂ (Rm, 0). We define the quasi-homogeneous part
of quasi-degree r of a by a(r) := [θ(r)]N . When a = a(r) we say that a is quasi-
homogeneous of quasi-degree r.

Proposition 3.8 ([D1]). If X is the germ of a quasi-homogeneous vector field of
quasi-degree i and ω is the germ of a quasi-homogeneous differential form of quasi-
degree j then LXω is the germ of a quasi-homogeneous differential form of quasi-
degree i+ j.
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Throughout this paper, E = ({L1, L2, L3}, 0) is the Lagrangian star in
((R2n, ω), 0) where L1 = {y1 = · · · = yn = 0}, L2 = {x1 = · · · = xn = 0} and
L3 = {x1 − y1 = · · · = xn − yn = 0}.

Let k be a non-negative integer. Let us fix some notations:

• Λk
reg(R2n): the vector space of the k-forms vanishing on TLreg.

• [Λk
reg(R2n)]L: the vector space of algebraic restrictions to L of elements of

Λk
reg(R2n).

• Λk,cl
reg (R2n): the subspace of Λk

reg(R2n) consisting of closed k-forms vanishing on
TLreg.

• [Λk,cl
reg (R2n)]L: the subspace of [Λk

reg(R2n)]L consisting of algebraic restrictions
to L of elements of Λk,cl

reg (R2n).

4. Reduction to the linear case

In this section we reduce the classification of the algebraic restrictions to L of
symplectic forms vanishing on TLreg under the action of local symmetries of L to
the classification of the algebraic restrictions to L of homogeneous symplectic forms
of degree 2 under the action of linear local symmetries of L.

The first step is to find a finite set of generators of [Λ2,cl
reg (R2n)]L. For this we need

some results.

Proposition 4.1. Let θ be a k-form in Λk
reg(R2n). Then θ(r) ∈ Λk

reg(R2n) , for all
non-negative integer r ≥ k.

Proof. Since θ is a k-form then θ(r) = 0 for all r = 0, . . . , k − 1. Let r ≥ k. Writing
θ in its Taylor series we have

θ = θ(k) + · · ·+ θ(r) + T,

where θ(s) is a homogeneous k-form of degree s, s = k, . . . , r, and T is a k-form with
T (i) = 0, i = 0, . . . , r.

Let p ∈ Lj and u1, . . . , uk ∈ TpLj = Lj, for some j ∈ {1, 2, 3}. Let u =
(u1, . . . , uk) then for t 6= 0 small enough we have

0 = θ(tp)u = θ(k)(p)u+ · · ·+ tr−kθ(r)(p)u+ T (tp)u.

Since lim
t→0

T (tp)

tr−k
= 0 we conclude that θ(r) vanishes on TLj, for all j ∈ {1, 2, 3}.

Therefore θ(r) vanishes on TLreg.
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Next we show that the generators of [Λ2,cl
reg (R2n)]L are obtained as derivatives of

the generators of [Λ1
reg(R2n)]L. In this case we reduce our problem to 1-forms.

Proposition 4.2. Let σ be a 2-form in Λ2,cl
reg (R2n). Then there exists a 1-form γ in

Λ1
reg(R2n) such that σ = dγ.

Proof. We use the method described in [DJZ1]. Define F : [0, 1]× R2n → R2n given
by F (t, x, y) = Ft(x, y) = (tx, ty). Let Xt be the vector field associated with the
equation dFt

dt
= Xt ◦ Ft, for 0 < t0 ≤ t ≤ 1. We have

σ − Ft0∗σ=

∫ 1

t0

d

dt
F ∗t σdt=

∫ 1

t0

F ∗t (LXtσ)dt=

∫ 1

t0

F ∗t (d(iXtσ))dt=d

∫ 1

t0

F ∗t (iXtσ)dt.

Letting t0 → 0 we get σ = dβ where β =
∫ 1

0
F ∗t (iXtσ)dt. For every p ∈ Lreg and

v ∈ TpLreg we have

F ∗t (iXtσ)(p) · v = σ(tp)(Xt ◦ Ft(p), dFt(p) · v) = 0,

for all t ∈ (0, 1]. Then β(p) · v = 0.

Proposition 4.3. If γ ∈ Λ1
reg(R2n) then dγ ∈ Λ2,cl

reg (R2n).

Proof. We can write γ =
∑n

j=1(fjdxj+gjdyj), where fj and gj are germs of functions

on (R2n, 0), j = 1, . . . , n. We have

dγ =
n∑

i,j=1

((
∂fj
∂xi

dxi +
∂fj
∂yi

dyi

)
∧ dxj +

(
∂gj
∂xi

dxi +
∂gj
∂yi

dyi

)
∧ dyj

)
.

As γ|TLreg = 0 then fj(x, 0) = 0, gj(0, y) = 0 and (fj + gj)(z, z) = 0. Thus
dγ|TL1 = dγ|TL2 = 0 and

dγ|TL3 =
n∑

i,j=1

((
∂fj
∂zi

(z, z) +
∂gj
∂zi

(z, z)

)
dzi ∧ dzj

)
= 0.

Due to Proposition 4.1, Λ1
reg(R2n) is generated by homogeneous 1-forms. Next

we find generators of Λ1
reg(R2n) homogeneous of degree ≤ 4. In Lemma 4.4, we

prove that the elements in Λ1
reg(R2n) homogeneous of degree ≥ 5 have zero algebraic

restriction to L. We conclude that [Λ1
reg(R2n)]L is a finite dimensional vector space
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generated by algebraic restrictions to L of homogeneous 1-forms vanishing on TLreg

of degree ≤ 4.
Clearly there is no homogeneous 1-forms of degree 1 in Λ1

reg(R2n).

Generators of degree 2:

Let γ =
∑n

i,j=1(aijxidxj + bijxidyj + cijyidxj + eijyidyj) be a 1-form in Λ1
reg(R2n).

It is easy to see that
∑n

i,j=1 aijxidxj =
∑n

i,j=1 eijyidyj = 0 and bij = −cji, for all

i, j ∈ {1, . . . , n}. Thus the homogeneous 1-forms of degree 2 in Λ1
reg(R2n) are linear

combination of the 1-forms:

• xidyj − yidxj, i, j ∈ {1, . . . , n}.

Analogously we find the generators of degree 3 and 4.

Generators of degree 3:

• xixjdyk − xiyjdyk

• xixjdyk − yixjdyk

• xixjdyk − xiyjdxk

• xixjdyk − yixjdxk

• xixjdyk − yiyjdxk

where i, j, k ∈ {1, . . . , n}.

Generators of degree 4:

• xixjxkdyl − xixjykdyl

• xixjxkdyl − xiyjxkdyl

• xixjxkdyl − yixjxkdyl

• xixjxkdyl − xiyjykdyl

• xixjxkdyl − yixjykdyl

• xixjxkdyl − yiyjxkdyl

• xixjxkdyl − xixjykdxl

• xixjxkdyl − xiyjxkdxl

• xixjxkdyl − yixjxkdxl

• xixjxkdyl − xiyjykdxl

• xixjxkdyl − yixjykdxl

• xixjxkdyl − yiyjxkdxl

• xixjxkdyl − yiyjykdxl

where i, j, k, l ∈ {1, . . . , n}.

Lemma 4.4. The 1-forms homogeneous of degree greater than or equal to 5 in
Λ1

reg(R2n) have zero algebraic restriction to L.
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Proof. Let γ̃ =
∑n

j=1(fj(x, y)dxj + gj(x, y)dyj) in Λ1
reg(R2n), where fj, gj are germs

of functions on (R2n, 0), i = 1, . . . , n. As γ̃ vanishes on TL1 and TL2 then γ̃ =∑n
i,j=1(yifij(x, y)dxj+xigij(x, y)dyj), where fij, gij are germs of functions on (R2n, 0),

i, j = 1, . . . , n.
Let γ be a homogeneous 1-form of degree l+ 1 ≥ 5 in Λ1

reg(R2n), then γ is of the
form:

γ =
∑
a1,i1···ilkyi1xi2 · · ·xildxk + · · ·+

∑
al,i1···ilkyi1 · · · yildxk+∑

b1,i1···ilkxi1yi2 · · · yildyk + · · ·+
∑
bl,i1···ilkxi1 · · ·xildyk,

where i1, . . . , il, k ∈ {1, . . . , n}. As γ|TL3 = 0, for i1, . . . , il, k ∈ {1, . . . , n} one has∑
σ∈Sl

(a1,σ(i1)···σ(il)k + · · ·+ al,σ(i1)···σ(il)k + b1,σ(i1)···σ(il)k + · · ·+ bl,σ(i1)···σ(il)k) = 0,

where Sl is the group of permutation of {i1, . . . , il}. Thus the 1-forms homogeneous
of degree l + 1 in Λ1

reg(R2n) are generated by 1-forms of the type

ρtσ = yi1yi2xi3 · · ·xildxk − xσ(i1) · · ·xσ(it)yσ(it+1) · · · yσ(il)dxk,

ξtσ = yi1yi2xi3 · · ·xildxk − yσ(i1) · · · yσ(it)xσ(it+1) · · · xσ(il)dyk,

where σ ∈ Sl and 0 ≤ t ≤ l − 1.
Let t ∈ {1, . . . , l − 1}. Observe that the polynomial yi1yi2xi3 · · ·xilxk−

xσ(i1) · · ·xσ(it)yσ(it+1) · · · yσ(il)xk vanishes on L. Then the 1-forms of the type ρtσ and
ξtσ are generated by

ρ = yi1yi2xi3 · · ·xildxk − yi1 · · · yildxk

ξ1 = yi1yi2xi3 · · ·xildxk − xi1 · · ·xildyk

ξ2 = yi1yi2xi3 · · ·xil(dxk − dyk).

Note that the polynomial h(x, y) = yi1yi2xi3 · · ·xil(xk − yk) vanishes on L. Then the
1-form dh has zero algebraic restriction to L. We have dh = ξ2 + γ̂, where

γ̂ = yi2xi3 · · ·xil(xk − yk)dyi1 + yi1xi3 · · ·xil(xk − yk)dyi2

+
∑l

u=3 yi1yi2xi3 · · ·xiu−1xiu+1 · · ·xil(xk − yk)dxu.

Clearly γ̂ has zero algebraic restriction to L. Then ξ2 has zero algebraic restriction
to L. The proof that 1-forms of the type ρ and ξ1 has zero algebraic restriction to L
follows from the fact that ξ2 has zero algebraic restriction to L.
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The following result provides a finite set of generators of [Λ2,cl
reg (R2n)]L.

Proposition 4.5. A finite set of generators of [Λ2,cl
reg (R2n)]L is given by:

• Degree 2: [dxi ∧ dyj − dyi ∧ dxj]L, 1 ≤ i ≤ j ≤ n;

• Degree 3: [d(xiyj)∧dxk−d(yiyj)∧dxk]L, [d(xiyj)∧dxk−d(xiyj)∧dyk]L, 1 ≤
i ≤ j ≤ n, 1 ≤ k ≤ n;

• Degree 4: [d(xixjyk)∧dxl−d(yiyjxk)∧dyl]L, 1 ≤ i ≤ j ≤ k ≤ n, 1 ≤ l ≤ n.

Proof. According to Propositions 4.2 and 4.3, the derivatives of the generators of
[Λ1

reg(R2n)]L generate [Λ2,cl
reg (R2n)]L. Therefore it is sufficient to verify that the alge-

braic restrictions represented by

• xidyj − yidxj, 1 ≤ i ≤ j ≤ n

• xiyjdxk − yiyjdxk, xiyjdxk − xiyjdyk 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ n

• xixjykdxl − yiyjxkdyl, 1 ≤ i ≤ j ≤ k ≤ n, 1 ≤ l ≤ n

generate [Λ1
reg(R2n)]L. According to Proposition 4.1, we fix a degree and find gener-

ators for this fixed degree. Since the calculation is similar for each degree, we find a
set of homogeneous generators of degree 4. The homogeneous 1-forms vanishing on
TLreg of degree 4 are generated by:

• xixjxkdyl − xixjykdyl

• xixjxkdyl − xiyjxkdyl

• xixjxkdyl − yixjxkdyl

• xixjxkdyl − xiyjykdyl

• xixjxkdyl − yixjykdyl

• xixjxkdyl − yiyjxkdyl

• xixjxkdyl − xixjykdxl

• xixjxkdyl − xiyjxkdxl

• xixjxkdyl − yixjxkdxl

• xixjxkdyl − xiyjykdxl

• xixjxkdyl − yixjykdxl

• xixjxkdyl − yiyjxkdxl

• xixjxkdyl − yiyjykdxl

where i, j, k, l ∈ {1, . . . , n}. Adding a zero algebraic restriction to L of the form
[h(x, y)dxl]L and [h(x, y)dyl]L, where h is a polynomial vanishing on L, we reduce
the generators of degree 4 to the following:
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• [xixjxkdyl − xixjykdyl]L

• [xixjxkdyl − xiyjykdxl]L

• [xixjxkdyl − yiyjykdxl]L

where i, j, k, l ∈ {1, . . . , n}. Note that d(xixjxkyl − xixjykyl) ∈ A 1
0 (L, (R2n, 0)).

Moreover,

d(xixjxkyl − xixjykyl) = (xjxkyl − xjykyl)dxi + (xixkyl − xiykyl)dxj+

xixjyldxk − xixjyldyk + (xixjxk − xixjyk)dyl.

Then the algebraic restrictions of the type [xixjxkdyl − xixjykdyl]L are generated
by algebraic restrictions of the type [xixjykdyl − yiyjxkdxl]L, i, j, k, l ∈ {1, . . . , n}.
Similarly, [xixjxkdyl − xiyjykdxl]L and [xixjxkdyl − yiyjykdxl]L are generated by
[xixjykdyl − yiyjxkdxl]L, i, j, k, l ∈ {1, . . . , n}.

The algebraic restrictions

[xixjykdxl − yiyjxkdyl]L, 1 ≤ i ≤ j ≤ k ≤ n, 1 ≤ l ≤ n,

generate the set algebraic restrictions of the 1-forms homogeneous of degree 4 in
[Λ1

reg(R2n)]L since for all permutation of the indices i, j, k the algebraic restrictions
of the type [xixjykdxl − yiyjxkdyl]L are the same.

Definition 4.6. A germ of vector field η on (Rm, 0) is liftable over a multigerm
F = {F1, . . . , Fs} : (Rk, S) → (Rm, 0) if there exist germs of vector fields ξ1, . . . , ξs
on (Rk, 0) such that

dFi ◦ ξi = η ◦ Fi, i = 1, . . . , s.

We denote the set of the germs of liftable vector fields over F by Lift(F ).

Consider the multigerm F : {F1, F2, F3} : (Rn, 0) → (R2n, 0) defined by
F1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0), F2(y1, . . . , yn) = (0, . . . , 0, y1, . . . , yn) and
F3(z1, . . . , zn) = (z1, . . . , zn, z1, . . . , zn).

Proposition 4.7. The germs of liftable vector fields over F are of the form∑n
i=1

(
Xi

∂
∂xi

+ Yi
∂
∂yi

)
, where Xi ∈ 〈x1, . . . , xn〉, Yi ∈ 〈y1, . . . , yn〉 and Xi − Yi ∈

〈x1 − y1, . . . , xn − yn〉 , i = 1, . . . , n.
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Proof. Let η =
∑n

i=1

(
Xi

∂
∂xi

+ Yi
∂
∂yi

)
be a germ of a vector field on (R2n, 0) where

Xi, Yi are as above. Consider the germs of the vector fields ξ1(x) =
∑n

i=1 Xi(x, 0) ∂
∂xi
,

ξ2(y) =
∑n

i=1 Yi(0, y) ∂
∂yi

and ξ3(z) =
∑n

i=1Xi(z, z) ∂
∂zi
. Clearly dFi ◦ ξi = η ◦ Fi,

i = 1, 2, 3. Then η is liftable over F .

Let W =
∑n

i=1

(
Ui

∂
∂xi

+ Vi
∂
∂yi

)
∈ Lift(F ). Then there exist ρ1, ρ2, ρ3 germs

of vector fields on Rn such that W ◦ Fi = dFi ◦ ρi, i = 1, 2, 3. Writing ρ1(x) =∑n
j=1 ρ

j
1(x) ∂

∂xj
for some germs of functions ρj1, j = 1, . . . , n, one has

dF1(x) · ρ1(x) = (ρ1
1(x), . . . , ρn1 (x), 0, . . . , 0).

Then Vi ∈ 〈y1, . . . , yn〉, for all i ∈ {1, . . . , n}. Analogously we have Ui ∈ 〈x1, . . . , xn〉
and Ui − Vi ∈ 〈x1 − y1, . . . , xn − yn〉, for all i = 1, . . . , n.

The next result establishes a relation between liftable and tangent vector fields.

Proposition 4.8. If η ∈ Lift(F ) then η is tangent to L.

Proof. Let h be a germ of function vanishing on L. There exist germs of vector fields
ξi such that η ◦ Fi = dFi ◦ ξi, i = 1, 2, 3. If p ∈ (Rn, 0) then

(dh ◦ η)(Fi(p)) = dh(Fi(p)) · η(Fi(p)) = dh(Fi(p)) · dFi(p) · ξi(p)

= d(h ◦ Fi)(p) · ξi(p) = 0,

since h ◦ Fi ≡ 0 on (Rn, 0).

Proposition 4.9. Let η ∈ Lift(F ) and let θ be a k-form with zero algebraic restric-
tion to L. Then Lηθ has zero algebraic restriction to L.

Proof. It follows from the fact that η is tangent to L and Lη(dβ) = d(Lηβ), for all
(k − 1)-form β.

Proposition 4.10. Let σ ∈ Λ2,cl
reg (R2n) and η ∈ Lift(F ) then Lησ ∈ Λ2,cl

reg (R2n).

Proof. By Proposition 4.2 there exists a 1-form γ ∈ Λ1
reg(R2n) such that σ = dγ.

Thus, Lησ = Lηdγ = dLηγ. By Proposition 4.3, it is sufficient to prove that Lηγ
vanishes on TLreg.

Let γ =
∑n

j=1 (fj(x, y)dxj + gj(x, y)dyj) ∈ Λ1
reg (R2n) and let Xj, Yj be germs of

functions, j = 1, . . . , n, such that η =
∑n

j=1

(
Xj

∂
∂xj

+ Yj
∂
∂yj

)
. As γ vanishes on
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TLreg we have fj(x, 0) = 0, gj(0, y) = 0 and (fj + gj)(z, z) = 0. Then

Lηγ =
n∑

i,j=1

(
∂(fjXj)

∂xi
dxi +

∂(fjXj)

∂yi
dyi +

∂(gjYj)

∂xi
dxi +

∂(gjYj)

∂yi
dyi

)

+
n∑

i,j=1

(
∂fj
∂xi

(Xidxj −Xjdxi) +
∂fj
∂yi

(Yidxj −Xjdyi)

)

+
n∑

i,j=1

(
∂gj
∂xi

(Xidyj − Yjdxi) +
∂gj
∂yi

(Yidyj − Yjdyi)
)
.

It follows from Proposition 4.7 that Lηγ vanishes on TL1 and TL2. The restriction
of Lηγ to TL3 is zero since

Lηγ|L3 =
n∑

i,j=1

(
∂(fjZj)

∂zi
(z, z)dzi +

∂(gjZj)

∂zi
(z, z)dzi

)

+
n∑

i,j=1

(
∂fj
∂zi

(z, z)(Zidzj − Zjdzi) +
∂gj
∂zi

(z, z)(Zidzj − Zjdzi)
)

=
n∑

i,j=1

(
∂((fj + gj)Zj)

∂zi
(z, z)dzi +

∂(fj + gj)

∂zi
(z, z)(Zidzj − Zjdzi)

)

where Zj(z) = Xj(z, z) = Yj(z, z), j = 1, . . . , n.

Let a be an algebraic restriction represented by a symplectic form vanishing on
TLreg. Due to Proposition 4.5, a has a symplectic representative σ = σ(2) +σ(3) +σ(4)
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where
σ(2) =

∑
1≤i≤j≤n

aij(dxi ∧ dyj − dyi ∧ dxj)

σ(3) =
∑

1≤i≤j≤n,
1≤k≤n

b
(1)
ijk(d(xiyj) ∧ dxk − d(yiyj) ∧ dxk)+

∑
1≤i≤j≤n,

1≤k≤n

b
(2)
ijk(d(xiyj) ∧ dxk − d(xiyj) ∧ dyk)

σ(4) =
∑

1≤i≤j≤k≤n,
1≤l≤n

cijkl(d(xixjyk) ∧ dxl − d(yiyjxk) ∧ dyl).

where aij, b
(1)
ijk, b

(2)
ijk, cijkl ∈ R. Note that σ(0) is represented by the matrix

M =

[
0 C
−C 0

]
,

where C = (cij) ∈ GL(n,R) is defined by


cij = aij, i < j
cij = aji, i > j
cii = 2aii, i = 1, . . . , n

.

Proposition 4.11. The algebraic restriction [σ]L is diffeomorphic to [σ(2)]L.

The proof of Proposition 4.11 follows from the next lemma.

Lemma 4.12. (i) The algebraic restriction [σ]L is diffeomorphic to [σ(2) + θ]L,
where θ is a homogeneous 2-form of degree 4 vanishing on TLreg.

(ii) The algebraic restriction [σ(2) + θ]L is diffeomorphic to [σ(2)]L.

Proof. We prove only the item (i) since the proof of (ii) is very similar. We use the
Moser homotopy method. Let

σ
(4)
t =

∑
1≤i≤j≤k≤n,

1≤l≤n

fijkl(t)(d(xixjyk) ∧ dxl − d(yiyjxk) ∧ dyl),

where fijkl : [0, 1]→ R are germs of functions with fijkl(0) = cijkl, 1 ≤ i ≤ j ≤ k ≤ n

and 1 ≤ l ≤ n. Let σt = σ(2) + (1 − t)σ(3) + σ
(4)
t . Suppose that there exists

Φt : (R2n, 0)→ (R2n, 0), t ∈ [0, 1], a family of local symmetries of L such that

Φ∗t [σt]L = [σ]L and Φ0 = Id. (4.0.1)
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Differentiating (4.0.1) on t we obtain

[Lηtσt]L =

[
σ(3) − dσ

(4)
t

dt

]
L

where ηt is obtained from the equation dΦt/dt = ηt ◦ Φt.
According to Propositions 3.8 and 4.10, if ηt ∈ Lift(F ) is homogeneous of degree

1 then
Lηtσ(2) = σ(3).

We look for a germ of vector field ηt satisfying

iηtσ
(2) =

∑
1≤i≤j≤n,

1≤k≤n

(b
(1)
ijk(xiyjdxk − yiyjdxk) + b

(2)
ijk(xiyjdxk − xiyjdyk)).

If ηt =
n∑
i=1

(
Xi(t, x, y)

∂

∂xi
+ Yi(t, x, y)

∂

∂yi

)
then

iηtσ
(2) =

n∑
i,j=1

eij(Xidyj − Yidxj),

where


eij = aij, i < j
eij = aji, i > j
eii = 2aii, i = 1, . . . , n

and E = (eij) ∈ GL(n,R). Therefore

n∑
i,j=1

eij(Xidyj − Yidxj) =
∑

1≤i≤j≤n,
1≤k≤n

(b
(1)
ijk(xiyjdxk − yiyjdxk) + b

(2)
ijk(xiyjdxk − xiyjdyk)).

We have the following system

(
E 0
0 E

)


X1
...
Xn

Y1
...
Yn


=

∑
1≤i≤j≤n



−b(2)
ij1xiyj

...

−b(2)
ijnxiyj

−b(1)
ij1(xiyj − yiyj)− b(2)

ij1xiyj
...

−b(1)
ijn(xiyj − yiyj)− b(2)

ijnxiyj


.
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Let W = (wij) ∈ GL(n,R) be the inverse matrix of E. The solution of the system
is given by

X1 = −
∑

1≤i≤j≤n

(w11(b
(2)
ij1xixj) + · · ·+ w1n(b

(2)
ijnxixj))

...

Xn = −
∑

1≤i≤j≤n

(wn1(b
(2)
ij1xixj) + · · ·+ wnn(b

(2)
ijnxixj))

Y1 = −
∑

1≤i≤j≤n

(w11(b
(1)
ij1(xiyj − yiyj) + b

(2)
ij1xiyj) + · · ·+

w1n(b
(1)
ijn(xiyj − yiyj) + b

(2)
ijnxiyj))

...

Yn = −
∑

1≤i≤j≤n

(wn1(b
(1)
ij1(xiyj − yiyj) + b

(2)
ij1xiyj) + · · ·+

wnn(b
(1)
ijn(xiyj − yiyj) + b

(2)
ijnxiyj)).

By Proposition 4.7 the germ of vector field ηt =
∑n

i=1

(
Xi

∂
∂xi

+ Yi
∂
∂yi

)
is liftable over

F .
According to Proposition 3.8 and 4.10 we have that Lηtσ

(4)
t is a closed 2-form

homogeneous of degree 5 vanishing on TLreg. It follows from Proposition 4.5 that

Lηtσ
(4)
t has zero algebraic restriction to L.

We determine the germs of functions fijkl by the ODEs

iηt(1− t)σ(3) = −
∑

1≤i≤j≤k≤n,
1≤l≤n

dfijkl(t)

dt
(xixjykdxl − xixjykdyl)

with the initial data fijk(0) = cijkl.
We prove that

Lηt(σ(2) + (1− t)σ(3)) = σ(3) − d

dt
σ

(4)
t .

Thus the family of diffeomorphisms Φt associated to ηt preserves L since ηt is liftable
over F and Φ∗t [σt]L = [σ]L, t ∈ [0, 1]. Therefore [σ]L is diffeomorphic to [σ(2) + θ]L,
where

θ =
∑

1≤i≤j≤k≤n,
1≤l≤n

c̃ijkl(d(xixjyk) ∧ dxl − d(xixjyk) ∧ dyl).

where c̃ijkl = fijkl(1)
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Proposition 4.13. Let Φ : (R2n, 0) → (R2n, 0) be a local symmetry of L. Then the
germ of diffeomorphism Φ(1) is a local symmetry of L.

Proof. Let ji be a permutation of {1, 2, 3} such that Φ(Li) = Lji , for i = 1, 2, 3. Let
p ∈ Li, for some i ∈ {1, 2, 3}. We can write Φ in its Taylor series as

Φ = Φ(1) + Φ̃

where Φ̃(1) = 0. As Li is a germ of a linear subspace of R2n then Φ(tp)/t belongs to
the linear subspace `ji which contains the germ Lji , for all t ∈ (0, 1]. Then

lim
t→0

Φ(tp)

t
= Φ(1)(p) ∈ `ji .

Taking p close to the origin we have Φ(1)(p) ∈ Lji .

As a consequence of Propositions 4.11 and 4.13, the classification of the algebraic
restrictions to L of symplectic forms vanishing on TLreg under the action of local
symmetries of L reduces to the classification of algebraic restrictions to L of sym-
plectic forms homogeneous of degree 2 vanishing on TLreg under the action of linear
local symmetries of L. Since every 2-form does not have zero algebraic restriction to
L we have the following result:

Proposition 4.14. Let σ1, σ2 be two symplectic forms vanishing on TLreg. Then
[σ1]L is diffeomorphic to [σ2]L if and only if there exists a linear local symmetry of L

Ψ : (R2n, 0)→ (R2n, 0) such that Ψ∗σ
(2)
2 = σ

(2)
1 .

5. Symplectic classification of transversal Lagrangian stars

One can get the following result by direct calculation.

Proposition 5.1. Let Φ : (R2n, 0)→ (R2n, 0) be a linear local symmetry of L. Then
Φ is represented by one of the following matrices:

1.

[
B 0
0 B

]
2.

[
0 B
B 0

] 3.

[
B 0
B −B

]
4.

[
B −B
0 −B

] 5.

[
0 B
−B B

]
6.

[
B −B
B 0

]
where B ∈ GL(n,R).
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Let σ be a symplectic form homogeneous of degree 2 vanishing on TLreg. Ac-
cording to Proposition 4.5, σ is written as σ =

∑n
i,j=1 aijdxi ∧ dyj, where aij = aji,

i, j = 1, . . . , n. For all p ∈ (R2n, 0), the bilinear form σ(p) : R2n × R2n → R has the
representing matrix

W =

[
0 A
−A 0

]
,

where A = (aij).
Let Φ : (R2n, 0) → (R2n, 0) be a linear local symmetry of L represented by the

matrix of the type 1 of Proposition 5.1. The pullback of σ by Φ is given by

(1)

[
0 BTAB

−BTAB 0

]
.

For the other cases described in Proposition 5.1, the pullback has one of the fol-
lowings representations

(2)

[
0 −BTAB

BTAB 0

]
(3)

[
0 −BTAB

BTAB 0

]
(4)

[
0 −BTAB

BTAB 0

]
(5)

[
0 BTAB

−BTAB 0

]
(6)

[
0 BTAB

−BTAB 0

]
.

Definition 5.2. Two matrices A,B ∈M(n,R) are congruent if there exists a matrix
P ∈ GL(n,R) such that

A = P TBP.

The problem of classification of algebraic restrictions to L of symplectic forms ho-
mogeneous of degree 2 vanishing on TLreg under the action of linear local symmetries
of L is equivalent to the problem of classification of invertible symmetric matrices
under the action of congruence. For such classification we use the Sylvester’s Law of
Inertia (see [R]).

For each s ∈ {0, . . . , n}, define as = [ωs]L where

ωs = dx1 ∧ dy1 + · · ·+ dxs ∧ dys − dxs+1 ∧ dys+1 − · · · − dxn ∧ dyn.

Proposition 5.3. Let σ be a symplectic form on (R2n, 0) vanishing on TLreg. Then
[σ]L is diffeomorphic to one and only one algebraic restriction of the type as, for
some s ∈ {0, . . . , n} with s ≤ n

2
.
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Proof. According to Proposition 4.14, it is sufficient to verify that for a symplectic
form σ homogeneous of degree 2 vanishing on TLreg there exists a linear local sym-
metry of L Ψ : (R2n, 0) → (R2n, 0) such that Ψ∗σ = ωs, for a unique s ∈ {0, . . . , n}
such that s ≤ n

2
. According to Proposition 4.5, for all p ∈ (R2n, 0) the bilinear form

σ(p) : R2n × R2n → R is represented by the matrix

W =

[
0 A
−A 0

]
,

where A ∈ GL(n,R) is symmetric.
Due to Sylvester’s Law of Inertia, there exists B ∈ GL(n,R) such that BTAB is

equal to one and only one of the matrices Zu for some u ∈ {0, . . . , n} where

Zu =

[
Idu 0
0 −Idn−u

]
.

If u ≤ n
2

consider Φ the linear local symmetry of L represented by[
B 0
0 B

]
.

The bilinear form Φ∗σ(p) is represented by[
0 Zu
−Zu 0

]
.

Then Φ∗σ =
∑u

i=1 dxi ∧ dyi −
∑n

i=u+1 dxi ∧ dyi = ωu

If u > n
2

consider Ψ the linear local symmetry of L represented by[
0 B
B 0

]
.

Thus Ψ∗σ(p) is represented by [
0 −Zu
Zu 0

]
.

Due to Sylvester’s Law of Inertia, there exists C ∈ GL(n,R) such that CT (−Zu)C =
Zn−u. Let H be a linear local symmetry of L represented by[

C 0
0 C

]
.
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We have

H∗Ψ∗σ =
n−u∑
i=1

dxi ∧ dyi −
n∑

i=n−u+1

dxi ∧ dyi = ωn−u.

Then the orbits of algebraic restrictions to L of symplectic forms have symplectic
representatives ωs, for s ≤ n

2
.

It remains only to prove that the orbits of a1, . . . , al are disjoints, where l is the
biggest integer such that l ≤ n

2
. Let u, v ∈ {0, . . . , n}, u, v ≤ n

2
and u 6= v. The

forms ωu(p) and ωv(p) are represented by:

ωu(p) =

[
0 Zu
−Zu 0

]
and ωv(p) =

[
0 Zv
−Zv 0

]
.

Note that the signatures of Zv and −Zv are distinct of the signature of Zu. According
to Sylvester’s Law of Inertia, the matrix Zu is not congruent neither to Zv nor to
−Zv. It follows from Proposition 5.1 that there is no linear local symmetry of L
T : (R2n, 0)→ (R2n, 0) such that T ∗au = av. Therefore the orbits represented by au
and av are disjoints.

Now we have the elements to obtain the symplectic classification of transversal
Lagrangian stars in ((R2n, ω), 0).

Proof of Theorem 2.3. Due to Proposition 5.3, the orbits of the algebraic restrictions
to L of symplectic forms vanishing on TLreg are a1 = [ω1]L, . . . , au = [ωu]L, where
u is the biggest integer that satisfies u ≤ n

2
. Let s be a positive integer such that

s ≤ u. Consider the germ of diffeomorphism Φs : (R2n, 0) → (R2n, 0) defined by
Φs(x, y) = (x, y1, . . . , ys,−ys+1, . . . ,−yn). Note that Φ∗sωs = ω. Then the algebraic
restrictions a1, . . . , au are diffeomorphic respectively to

[ω]Φ−1
1 (L), . . . , [ω]Φ−1

u (L).

Let Es = ({Φ−1
s (L1),Φ−1

s (L2),Φ−1
s (L3)}, 0).

Finally we apply Theorem 3.3 to obtain the normal forms of transversal La-
grangian stars E1, . . . , Eu.
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